Consistent estimation of mixture complexity

The consistent estimation of mixture complexity is of fundamental importance in many applications of finite mixture models. An enormous body of literature exists regarding the application, computational issues and theoretical aspects of mixture models when the number of components is known, but estimating the unknown number of components remains an area of intense research effort. This article presents a semiparametric methodology yielding almost sure convergence of the estimated number of components to the true but unknown number of components. The scope of application is vast, as mixture models are routinely employed across the entire diverse application range of statistics, including nearly all of the social and experimental sciences.

[1]  J. Kiefer,et al.  CONSISTENCY OF THE MAXIMUM LIKELIHOOD ESTIMATOR IN THE PRESENCE OF INFINITELY MANY INCIDENTAL PARAMETERS , 1956 .

[2]  R. Beran Minimum Hellinger distance estimates for parametric models , 1977 .

[3]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[4]  R. Redner Note on the Consistency of the Maximum Likelihood Estimate for Nonidentifiable Distributions , 1981 .

[5]  D. Pollard Convergence of stochastic processes , 1984 .

[6]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[7]  J. Henna On estimating of the number of constituents of a finite mixture of continuous distributions , 1985 .

[8]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[9]  R. Tamura,et al.  Minimum Hellinger Distance Estimation for Multivariate Location and Covariance , 1986 .

[10]  G. McLachlan On Bootstrapping the Likelihood Ratio Test Statistic for the Number of Components in a Normal Mixture , 1987 .

[11]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  J. Pfanzagl,et al.  Consistency of maximum likelihood estimators for certain nonparametric families, in particular: mixtures , 1988 .

[13]  J. Marron,et al.  Uniform consistency of automatic and location-adaptive delta-sequence estimators , 1989 .

[14]  P. Bickel,et al.  Achieving Information Bounds in Non and Semiparametric Models , 1990 .

[15]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[16]  J. Marron,et al.  Simultaneous Density Estimation of Several Income Distributions , 1992, Econometric Theory.

[17]  M. Wand,et al.  EXACT MEAN INTEGRATED SQUARED ERROR , 1992 .

[18]  B. R. Clarke,et al.  Robust estimation ofk-component univariate normal mixtures , 1994 .

[19]  K. Do,et al.  Efficient and Adaptive Estimation for Semiparametric Models. , 1994 .

[20]  Ricardo Fraiman,et al.  Minimum distance density-based estimation , 1995 .

[21]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[22]  John D. Kalbfleisch,et al.  Penalized minimum‐distance estimates in finite mixture models , 1996 .

[23]  O. Cordero-Braña,et al.  Minimum Hellinger Distance Estimation for Finite Mixture Models , 1996 .

[24]  Ricardo Cao,et al.  The consistency of a smoothed minimum distance estimate , 1996 .

[25]  L. Wasserman,et al.  Practical Bayesian Density Estimation Using Mixtures of Normals , 1997 .

[26]  E. Gassiat,et al.  The estimation of the order of a mixture model , 1997 .

[27]  E. Gassiat,et al.  Testing the order of a model using locally conic parametrization : population mixtures and stationary ARMA processes , 1999 .

[28]  Dong Wan Shin,et al.  Consistency of the maximum likelihood estimators for nonstationary ARMA regressions with time trends , 2000 .

[29]  C. Priebe,et al.  Alternating kernel and mixture density estimates , 2000 .