BENCHMARKED RISK MINIMIZATION

This paper discusses the problem of hedging not perfectly replicable contingent claims using the numéraire portfolio. The proposed concept of benchmarked risk minimization leads beyond the classical no‐arbitrage paradigm. It provides in incomplete markets a generalization of the pricing under classical risk minimization, pioneered by Föllmer, Sondermann, and Schweizer. The latter relies on a quadratic criterion, requests square integrability of claims and gains processes, and relies on the existence of an equivalent risk‐neutral probability measure. Benchmarked risk minimization avoids these restrictive assumptions and provides symmetry with respect to all primary securities. It employs the real‐world probability measure and the numéraire portfolio to identify the minimal possible price for a contingent claim. Furthermore, the resulting benchmarked (i.e., numéraire portfolio denominated) profit and loss is only driven by uncertainty that is orthogonal to benchmarked‐traded uncertainty, and forms a local martingale that starts at zero. Consequently, sufficiently different benchmarked profits and losses, when pooled, become asymptotically negligible through diversification. This property makes benchmarked risk minimization the least expensive method for pricing and hedging diversified pools of not fully replicable benchmarked contingent claims. In addition, when hedging it incorporates evolving information about nonhedgeable uncertainty, which is ignored under classical risk minimization.

[1]  F. Biagini Evaluating Hybrid Products: The Interplay Between Financial and Insurance Markets , 2013 .

[2]  Eckhard Platen,et al.  Local risk-minimization under the benchmark approach , 2012, 1210.2337.

[3]  Mark H. A. Davis,et al.  Fractional Kelly Strategies for Benchmarked Asset Management , 2011 .

[4]  I. Karatzas,et al.  Probabilistic Aspects of Arbitrage , 2010 .

[5]  S. Shreve,et al.  Methods of Mathematical Finance , 2010 .

[6]  W. Runggaldier,et al.  Pricing Without Equivalent Martingale Measures Under Complete and Incomplete Observation , 2010 .

[7]  I. Karatzas,et al.  Stochastic Portfolio Theory: an Overview , 2009 .

[8]  P. Protter,et al.  ASSET PRICE BUBBLES IN INCOMPLETE MARKETS * , 2008 .

[9]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[10]  Constantinos Kardaras,et al.  The numéraire portfolio in semimartingale financial models , 2007, Finance Stochastics.

[11]  M. Loewenstein,et al.  Options and Bubbles , 2007 .

[12]  Kasper Larsen,et al.  No Arbitrage and the Growth Optimal Portfolio , 2007 .

[13]  D. Heath,et al.  A Benchmark Approach to Quantitative Finance , 2006 .

[14]  Robert Fernholz,et al.  Diversity and relative arbitrage in equity markets , 2008, Finance Stochastics.

[15]  Eckhard Platen,et al.  A BENCHMARK APPROACH TO FINANCE , 2006 .

[16]  E. Platen Arbitrage in continuous complete markets , 2002, Advances in Applied Probability.

[17]  David Heath,et al.  Consistent pricing and hedging for a modified constant elasticity of variance model , 2002 .

[18]  E. Fernholz Stochastic Portfolio Theory , 2002 .

[19]  Dirk Becherer The numeraire portfolio for unbounded semimartingales , 2001, Finance Stochastics.

[20]  E. Jouini,et al.  Option pricing, interest rates and risk management , 2001 .

[21]  P. Protter,et al.  Explicit form and robustness of martingale representations , 2000 .

[22]  Gregory A. Willard,et al.  Local martingales, arbitrage, and viability Free snacks and cheap thrills , 2000 .

[23]  E. Ziirich,et al.  Hedging by Sequential Regression: an Introduction to the Mathematics of Option Trading , 1988, ASTIN Bulletin.

[24]  M. Schweizer A guided tour through quadratic hedging approaches , 1999 .

[25]  F. Delbaen,et al.  Arbitrage possibilities in Bessel processes and their relations to local martingales , 1995 .

[26]  M. Schweizer On the Minimal Martingale Measure and the Foellmer- Schweizer Decomposition , 1995 .

[27]  M. Schweizer Option hedging for semimartingales , 1991 .

[28]  Mark H. A. Davis,et al.  Applied Stochastic Analysis , 1991 .

[29]  H. Föllmer,et al.  Hedging of contingent claims under incomplete in-formation , 1991 .

[30]  John B. Long The numeraire portfolio , 1990 .

[31]  P. Protter Stochastic integration and differential equations , 1990 .

[32]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[33]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[34]  John L. Kelly,et al.  A new interpretation of information rate , 1956, IRE Trans. Inf. Theory.