A Powerful Numerical Technique Solving Zakai Equation for Nonlinear Filtering
暂无分享,去创建一个
[1] Zeev Schuss,et al. Theory and Applications of Stochastic Differential Equations , 1980 .
[2] W. Willman. Edgeworth expansions in state perturbation estimation , 1981 .
[3] J. Douglas Faires,et al. Numerical Analysis , 1981 .
[4] M. Zakai. On the optimal filtering of diffusion processes , 1969 .
[5] N. U. Ahmed,et al. Elements of Finite-dimensional Systems and Control Theory , 1988 .
[6] N. U. Ahmed,et al. Parameter identification for partially observed diffusions , 1992 .
[7] Alain Bensoussan,et al. Maximum principle and dynamic programming approaches of the optimal control of partially observed diffusions , 1983 .
[8] Kok Lay Teo,et al. Optimal control of distributed parameter systems , 1981 .
[9] S. Marcus,et al. On Lie algebras and finite dimensional filtering , 1982 .
[10] E. Pardouxt,et al. Stochastic partial differential equations and filtering of diffusion processes , 1980 .
[11] H. Kushner. Nonlinear filtering: The exact dynamical equations satisfied by the conditional mode , 1967, IEEE Transactions on Automatic Control.
[12] E. Wong,et al. On the Convergence of Ordinary Integrals to Stochastic Integrals , 1965 .
[13] V. Benes. Exact finite-dimensional filters for certain diffusions with nonlinear drift , 1981 .
[14] A. Friedman. Partial Differential Equations of Parabolic Type , 1983 .
[15] R. Bucy. Nonlinear filtering theory , 1965 .
[16] R. Elliott,et al. Approximations to solutions of the zakai filtering equation , 1989 .