Beneath the Compound Eye: Neuroanatomical Analysis and Physiological Correlates in the Study of Insect Vision

Students of the compound eye deserve to be pleased with the scope and depth of their knowledge about the diversity of physiological optics and receptor structure. The same may be said for modern research on receptor transduction, the structure and kinetics of visual pigments, and the molecular biology of the photoreceptor membrane. Now, 100 years after Exner published his views on the compound eye, our understanding of the molecular and biophysical properties of the receptor layer is certainly comparable to knowledge of vertebrate photoreceptors.

[1]  D. Varjú,et al.  Localization and Orientation in Biology and Engineering , 1984, Proceedings in Life Sciences.

[2]  Simon B. Laughlin,et al.  The Roles of Parallel Channels in Early Visual Processing by the Arthropod Compound Eye , 1984 .

[3]  D. Osorio,et al.  The temporal properties of non-linear, transient cells in the locust medulla , 2004, Journal of Comparative Physiology A.

[4]  Klaus Hausen,et al.  Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.

[5]  W T CATTON,et al.  Visual perception of movement in the locust , 1954, The Journal of physiology.

[6]  Bernhard Möhl,et al.  The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust , 1983, Journal of comparative physiology.

[7]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[8]  W. T. Catton,et al.  Transmission of visual responses in the nervous system of the locust , 1959, The Journal of physiology.

[9]  N. Strausfeld,et al.  Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.

[10]  K. Pearson,et al.  Proprioceptive gating of inhibitory pathways to hindleg flexor motoneurons in the locust , 1982, Journal of comparative physiology.

[11]  E. Kravitz,et al.  Neuronal Geometry: Determination with a Technique of Intracellular Dye Injecion , 1968, Science.

[12]  D W Arnett,et al.  Spatial and temporal integration properties of units in first optic ganglion of dipterans. , 1972, Journal of neurophysiology.

[13]  N. Strausfeld,et al.  Resolution of complex neuronal arrangements in the blowfly visual system using triple fluorescence staining , 2004, Cell and Tissue Research.

[14]  H. Wunderer,et al.  Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala meigen (Diptera: Calliphoridae): An eye region specialised for the detection of polarized light , 1982 .

[15]  M. Burrows,et al.  Connections between descending visual interneurons and metathoracic motoneurons in the locust , 1973, Journal of comparative physiology.

[16]  V. Braitenberg,et al.  Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.

[17]  K. Pearson,et al.  Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts , 1979, The Journal of comparative neurology.

[18]  H. Maldonado,et al.  A fovea in the praying mantis eye , 1970, Zeitschrift für vergleichende Physiologie.

[19]  V. Braitenberg Periodic structures and structural gradients in the visual ganglia of the fly , 1972 .

[20]  N. Strausfeld Mosaic Organizations, Layers, and Visual Pathways in the Insect Brain , 1976 .

[21]  Organization of receptive fields of spiking local interneurons in the locust with inputs from hair afferents. , 1985, Journal of neurophysiology.

[22]  F. Killmann,et al.  Both electrical and chemical transmission between the ‘lobula giant movement detector’ and the ‘descending contralateral movement detector’ neurons of locusts are supported by electron microscopy , 1985, Journal of neurocytology.

[23]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[24]  Robert D. DeVoe,et al.  Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.

[25]  D. Osorio,et al.  Temporal and spectral properties of sustaining cells in the medulla of the locust , 2004, Journal of Comparative Physiology A.

[26]  W. Reichardt Movement perception in insects , 1969 .

[27]  Robert D. DeVoe,et al.  Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala , 1976, Biological Cybernetics.

[28]  N. Franceschini,et al.  Distribution and properties of sex-specific photoreceptors in the flyMusca domestica , 1981, Journal of comparative physiology.

[29]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[30]  N. J. Strausfeld,et al.  Male and female visual neurones in dipterous insects , 1980, Nature.

[31]  M. G. Paulin,et al.  A vestibulo-ocular reflex with no head movement , 1986, Biological Cybernetics.

[32]  C. Goodman,et al.  Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.

[33]  D. Osorio,et al.  Directionally selective cells in the locust medulla , 1986, Journal of Comparative Physiology A.

[34]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[35]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[36]  John B. Thomas,et al.  The morphology of the cervical giant fiber neuron ofDrosophila , 1981, Brain Research.

[37]  Allen I. Selverston,et al.  Model Neural Networks and Behavior , 1985, Springer US.

[38]  Michael O'Shea,et al.  The Anatomy of a Locust Visual Interneurone; the Descending Contralateral Movement Detector , 1974 .

[39]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  N. Strausfeld,et al.  Peripheral and central nervous system projections in normal and mutant (bithorax) Drosophila melanogaster. , 1980, Basic life sciences.

[41]  W. Ribi,et al.  Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly , 1978, Cell and Tissue Research.

[42]  N. Strausfeld,et al.  Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.

[43]  O. Trujillo-Cenóz,et al.  Some aspects of the structural organization of the medulla in muscoid flies. , 1969, Journal of ultrastructure research.

[44]  M. Siegler,et al.  Local Interneurones and Local Interactions in Arthropods , 1984 .

[45]  N. J. Strausfeld,et al.  The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[46]  N. Strausfeld,et al.  Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.

[47]  H. Mittelstaedt Telotaxis und Optomotorik von Eristalis bei Augeninversion , 1949, Naturwissenschaften.

[48]  J P Miller,et al.  Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[50]  C. Wehrhahn Evidence for the role of retinal receptors R 7/8 in the orientation behaviour of the fly , 1976, Biological Cybernetics.

[51]  M. Sanders Handbook of Sensory Physiology , 1975 .

[52]  Michael O'Shea,et al.  The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.

[53]  Justus Liebig,et al.  Progress in Sensory Physiology , 1981, Progress in Sensory Physiology.

[54]  E. Buchner,et al.  Anatomical Localization of Functional Activity in Flies Using 3H-2-Deoxy-d-Glucose , 1983 .

[55]  S. R. Shaw,et al.  Retinal resistance barriers and electrical lateral inhibition , 1975, Nature.

[56]  H. Markl,et al.  Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .

[57]  N. Strausfeld,et al.  L3, the 3rd 2nd order neuron of the 1st visual ganglion in the “neural superposition” eye of Musca domestica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[58]  J. Bacon,et al.  The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust , 2004, Journal of comparative physiology.

[59]  Horseradish Peroxidase and Other Heme Proteins as Neuronal Markers , 1983 .

[60]  Neural circuits for jumping in the locust , 1982 .

[61]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[62]  N. Strausfeld,et al.  A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects , 1982, Cell and Tissue Research.

[63]  Wiersma Ca Integration in the visual pathway of crustacea. , 1966 .

[64]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[65]  Neuronal basis of a sensory analyser, the acridid movement detector system. III. Control of response amplitude by tonic lateral inhibition. , 1976, The Journal of experimental biology.

[66]  Matti Järvilehto,et al.  Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora , 1970, Zeitschrift für vergleichende Physiologie.

[67]  O. Trujillo-Cenóz,et al.  The fine structure of the central cells in the ommatidia of dipterans. , 1967, Journal of ultrastructure research.

[68]  C. Wiersma,et al.  “Descending” neuronal units in the commissure of the crayfish central nervous system; and their integration of visual, tactile and proprioceptive stimuli , 1965, The Journal of comparative neurology.

[69]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[70]  N. Strausfeld,et al.  Resolution of intraneuronal and transynaptic migration of cobalt in the insect visual and central nervous systems , 1976, Journal of comparative physiology.

[71]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[72]  W REICHARDT,et al.  Nervous integration in the facet eye. , 1962, Biophysical journal.

[73]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[74]  K. D. Roeder,et al.  Organization of the ascending giant fiber system in the cockroach, Periplaneta americana. , 1948, The Journal of experimental zoology.

[75]  M. E. Power The thoracico‐abdominal nervous system of an adult insect, Drosophila melanogaster , 1948, The Journal of comparative neurology.

[76]  Nicholas J. Strausfeld,et al.  Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[77]  H. Eckert,et al.  Intracellular recording and staining of directionally selective motion detecting neurons in fly optic lobe , 1975, Vision Research.

[78]  B. Mulloney Interneurons in the central nervous system of flies and the start of flight , 1969, Zeitschrift für vergleichende Physiologie.

[79]  Nicholas J. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .

[80]  Nicholas J. Strausfeld,et al.  Organizational principles of outputs from Dipteran brains , 1984 .

[81]  Martin Egelhaaf,et al.  Visual course control in flies relies on neuronal computation of object and background motion , 1988, Trends in Neurosciences.

[82]  Rüdiger Wehner,et al.  The Bee’s E-Vector Compass , 1987 .

[83]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. , 1976, The Journal of experimental biology.

[84]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[85]  C. Wiersma,et al.  On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii girard , 1958, The Journal of comparative neurology.

[86]  D. Young Developmental neurobiology of arthropods , 1973 .

[87]  J. Palka,et al.  Diffraction and Visual Acuity of Insects , 1965, Science.

[88]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[89]  J. Zeil,et al.  A new kind of neural superposition eye: the compound eye of male Bibionidae , 1979, Nature.

[90]  E. Liske,et al.  The influence of head position on the flight behaviour of the fly. Calliphora erythrocephala , 1977 .

[91]  C. Goodman,et al.  Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.

[92]  N. Strausfeld,et al.  The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.

[93]  R. Hengstenberg,et al.  Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[94]  N. Strausfeld The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[95]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[96]  N. Strausfeld,et al.  Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .

[97]  N. J. Strausfeld,et al.  Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.

[98]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[99]  D. King,et al.  On neuronal homology: A comparison of similar axons in Musca, Sarcophaga, and Drosophila (Diptera: Schizophora) , 1983, The Journal of comparative neurology.

[100]  N. Strausfeld,et al.  Visuo-motor pathways in arthropods , 1986, Naturwissenschaften.

[101]  G. Horridge The Compound eye and vision of insects , 1975 .

[102]  N. Strausfeld,et al.  The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica , 1985, Cell and Tissue Research.

[103]  Matti Järvilehto,et al.  Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.

[104]  Rodney K. Murphey,et al.  Positional information, compartments, and the cercal sensory system of crickets , 1986 .

[105]  M. Cohen,et al.  Branching of Central Neurons: Intracellular Cobalt Injection for Light and Electron Microscopy , 1972, Science.

[106]  J. Levine,et al.  Stereotaxic map of the muscle fibers in the indirect flight muscles of Drosophila melanogaster , 1973, Journal of morphology.

[107]  R. Murphey Maps in the Insect Nervous System, Their Implications for Synaptic Connectivity and Target Location in the Real World , 1983 .

[108]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[109]  C. Rowell,et al.  A spike-transmitting electrical synapse between visual interneurones in the locust movement detector system , 1975, Journal of comparative physiology.

[110]  T. Collett,et al.  Binocular, Directionally Selective Neurones, Possibly Involved in the Optomotor Response of Insects , 1966, Nature.

[111]  I. Meinertzhagen,et al.  Synaptogenesis in the first optic neuropile of the fly's visual system , 1982, Journal of neurocytology.

[112]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[113]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[114]  M O'shea,et al.  The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. , 1976, The Journal of experimental biology.

[115]  R. Hardie Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.

[116]  O. Trujillo-Cenóz Some aspects of the structural organization of the arthropod eye. , 1965, Cold Spring Harbor symposia on quantitative biology.

[117]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[118]  F. Zettler,et al.  Neural principles in vision , 1976 .

[119]  K. Hausen,et al.  The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.

[120]  Nicholas J. Strausfeld,et al.  The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.

[121]  K. Pearson,et al.  Neural Networks Controlling Locomotion in Locusts , 1985 .

[122]  H. Hertel Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.

[123]  J Palka,et al.  Discrimination between movements of eye and object by visual interneurones of crickets. , 1969, The Journal of experimental biology.

[124]  R. Hengstenberg Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.

[125]  Sexual dimorphism in the visual system of flies: The divided brain of male Bibionidae (Diptera) , 2004, Cell and Tissue Research.

[126]  L G Bishop,et al.  Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. , 1981, Journal of neurobiology.

[127]  S. Wada Spezielle randzonale ommatidien von Calliphora Erythrocephala meig. (diptera calliphoridae): Architektur der zentralen rhabdomeren-kolumne und topographie im komplexauge , 1974 .

[128]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[129]  Jeffrey C. Hall,et al.  Development and Neurobiology of Drosophila , 1980, Basic Life Sciences.

[130]  N. J. Strausfeld,et al.  The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[131]  Roland Hengstenberg,et al.  Roll-Stabilization During Flight of the Blowfly’s Head and Body by Mechanical and Visual Cues , 1984 .

[132]  F C Rind,et al.  A chemical synapse between two motion detecting neurones in the locust brain. , 1984, The Journal of experimental biology.

[133]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[134]  W. J. Heitler,et al.  The locust jump. II. Neural circuits of the motor programme. , 1977, The Journal of experimental biology.

[135]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[136]  N. Strausfeld,et al.  Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light , 1985, Cell and Tissue Research.

[137]  C. H. F. Rowell,et al.  Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control , 1986, Trends in Neurosciences.

[138]  F. Newell Information Processing in the Visual Systems of Arthropods , 1973 .

[139]  F. Claire Rind,et al.  A DIRECTIONALLY SENSITIVE MOTION DETECTING NEURONE IN THE BRAIN OF A MOTH , 1983 .

[140]  J. Bacon,et al.  The tritocerebral commissure giant (TCG): A bimodal interneurone in the locust,Schistocerca gregaria , 1978, Journal of comparative physiology.

[141]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[142]  Werner Reichardt,et al.  Processing of optical data by organisms and by machines , 1969 .

[143]  R. Wyman,et al.  Anatomy of the giant fibre pathway inDrosophila. I. Three thoracic components of the pathway , 1980, Journal of neurocytology.

[144]  J. Kien Morphology of locust neck muscle motoneurons and some of their inputs , 1980, Journal of comparative physiology.

[145]  Erich Buchner,et al.  NEUROANATOMICAL MAPPING OF VISUALLY INDUCED NERVOUS ACTIVITY IN INSECTS BY 3H-DEOXYGLUCOSE , 1984 .

[146]  Integration and Analysis of Movement Information by the Visual System of Flies , 1970, Nature.

[147]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.