Beneath the Compound Eye: Neuroanatomical Analysis and Physiological Correlates in the Study of Insect Vision
暂无分享,去创建一个
[1] D. Varjú,et al. Localization and Orientation in Biology and Engineering , 1984, Proceedings in Life Sciences.
[2] Simon B. Laughlin,et al. The Roles of Parallel Channels in Early Visual Processing by the Arthropod Compound Eye , 1984 .
[3] D. Osorio,et al. The temporal properties of non-linear, transient cells in the locust medulla , 2004, Journal of Comparative Physiology A.
[4] Klaus Hausen,et al. Motion sensitive interneurons in the optomotor system of the fly , 1982, Biological Cybernetics.
[5] W T CATTON,et al. Visual perception of movement in the locust , 1954, The Journal of physiology.
[6] Bernhard Möhl,et al. The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust , 1983, Journal of comparative physiology.
[7] Santiago Ramón y Cajal,et al. Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .
[8] W. T. Catton,et al. Transmission of visual responses in the nervous system of the locust , 1959, The Journal of physiology.
[9] N. Strausfeld,et al. Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.
[10] K. Pearson,et al. Proprioceptive gating of inhibitory pathways to hindleg flexor motoneurons in the locust , 1982, Journal of comparative physiology.
[11] E. Kravitz,et al. Neuronal Geometry: Determination with a Technique of Intracellular Dye Injecion , 1968, Science.
[12] D W Arnett,et al. Spatial and temporal integration properties of units in first optic ganglion of dipterans. , 1972, Journal of neurophysiology.
[13] N. Strausfeld,et al. Resolution of complex neuronal arrangements in the blowfly visual system using triple fluorescence staining , 2004, Cell and Tissue Research.
[14] H. Wunderer,et al. Fine structure of ommatidia at the dorsal eye margin of Calliphora erythrocephala meigen (Diptera: Calliphoridae): An eye region specialised for the detection of polarized light , 1982 .
[15] M. Burrows,et al. Connections between descending visual interneurons and metathoracic motoneurons in the locust , 1973, Journal of comparative physiology.
[16] V. Braitenberg,et al. Ordnung und Orientierung der Elemente im Sehsystem der Fliege , 1970, Kybernetik.
[17] K. Pearson,et al. Correlation of variability in structure with variability in synaptic connections of an identified interneuron in locusts , 1979, The Journal of comparative neurology.
[18] H. Maldonado,et al. A fovea in the praying mantis eye , 1970, Zeitschrift für vergleichende Physiologie.
[19] V. Braitenberg. Periodic structures and structural gradients in the visual ganglia of the fly , 1972 .
[20] N. Strausfeld. Mosaic Organizations, Layers, and Visual Pathways in the Insect Brain , 1976 .
[21] Organization of receptive fields of spiking local interneurons in the locust with inputs from hair afferents. , 1985, Journal of neurophysiology.
[22] F. Killmann,et al. Both electrical and chemical transmission between the ‘lobula giant movement detector’ and the ‘descending contralateral movement detector’ neurons of locusts are supported by electron microscopy , 1985, Journal of neurocytology.
[23] V. Braitenberg,et al. A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.
[24] Robert D. DeVoe,et al. Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.
[25] D. Osorio,et al. Temporal and spectral properties of sustaining cells in the medulla of the locust , 2004, Journal of Comparative Physiology A.
[26] W. Reichardt. Movement perception in insects , 1969 .
[27] Robert D. DeVoe,et al. Intracellular responses from cells of the medulla of the fly, Calliphora erythrocephala , 1976, Biological Cybernetics.
[28] N. Franceschini,et al. Distribution and properties of sex-specific photoreceptors in the flyMusca domestica , 1981, Journal of comparative physiology.
[29] G. D. Mccann,et al. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.
[30] N. J. Strausfeld,et al. Male and female visual neurones in dipterous insects , 1980, Nature.
[31] M. G. Paulin,et al. A vestibulo-ocular reflex with no head movement , 1986, Biological Cybernetics.
[32] C. Goodman,et al. Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.
[33] D. Osorio,et al. Directionally selective cells in the locust medulla , 1986, Journal of Comparative Physiology A.
[34] N. Strausfeld,et al. The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .
[35] R. Hardie. Functional Organization of the Fly Retina , 1985 .
[36] John B. Thomas,et al. The morphology of the cervical giant fiber neuron ofDrosophila , 1981, Brain Research.
[37] Allen I. Selverston,et al. Model Neural Networks and Behavior , 1985, Springer US.
[38] Michael O'Shea,et al. The Anatomy of a Locust Visual Interneurone; the Descending Contralateral Movement Detector , 1974 .
[39] N. Strausfeld. The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[40] N. Strausfeld,et al. Peripheral and central nervous system projections in normal and mutant (bithorax) Drosophila melanogaster. , 1980, Basic life sciences.
[41] W. Ribi,et al. Gap junctions coupling photoreceptor axons in the first optic ganglion of the fly , 1978, Cell and Tissue Research.
[42] N. Strausfeld,et al. Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.
[43] O. Trujillo-Cenóz,et al. Some aspects of the structural organization of the medulla in muscoid flies. , 1969, Journal of ultrastructure research.
[44] M. Siegler,et al. Local Interneurones and Local Interactions in Arthropods , 1984 .
[45] N. J. Strausfeld,et al. The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[46] N. Strausfeld,et al. Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.
[47] H. Mittelstaedt. Telotaxis und Optomotorik von Eristalis bei Augeninversion , 1949, Naturwissenschaften.
[48] J P Miller,et al. Integrative mechanisms controlling directional sensitivity of an identified sensory interneuron , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[49] B. Hassenstein,et al. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .
[50] C. Wehrhahn. Evidence for the role of retinal receptors R 7/8 in the orientation behaviour of the fly , 1976, Biological Cybernetics.
[51] M. Sanders. Handbook of Sensory Physiology , 1975 .
[52] Michael O'Shea,et al. The anatomy and output connection of a locust visual interneurone; the lobular giant movement detector (LGMD) neurone , 1974, Journal of comparative physiology.
[53] Justus Liebig,et al. Progress in Sensory Physiology , 1981, Progress in Sensory Physiology.
[54] E. Buchner,et al. Anatomical Localization of Functional Activity in Flies Using 3H-2-Deoxy-d-Glucose , 1983 .
[55] S. R. Shaw,et al. Retinal resistance barriers and electrical lateral inhibition , 1975, Nature.
[56] H. Markl,et al. Head Movements in Flies ( Calliphora ) Produced by Deflexion of the Halteres , 1980 .
[57] N. Strausfeld,et al. L3, the 3rd 2nd order neuron of the 1st visual ganglion in the “neural superposition” eye of Musca domestica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[58] J. Bacon,et al. The tritocerebral commissure giant (TCG) wind-sensitive interneurone in the locust , 2004, Journal of comparative physiology.
[59] Horseradish Peroxidase and Other Heme Proteins as Neuronal Markers , 1983 .
[60] Neural circuits for jumping in the locust , 1982 .
[61] M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .
[62] N. Strausfeld,et al. A pair of descending neurons with dendrites in the optic lobes projecting directly to thoracic ganglia of dipterous insects , 1982, Cell and Tissue Research.
[63] Wiersma Ca. Integration in the visual pathway of crustacea. , 1966 .
[64] R. Hardie,et al. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.
[65] Neuronal basis of a sensory analyser, the acridid movement detector system. III. Control of response amplitude by tonic lateral inhibition. , 1976, The Journal of experimental biology.
[66] Matti Järvilehto,et al. Postsynaptic potentials from a single monopolar neuron of the ganglion opticum I of the blowfly Calliphora , 1970, Zeitschrift für vergleichende Physiologie.
[67] O. Trujillo-Cenóz,et al. The fine structure of the central cells in the ommatidia of dipterans. , 1967, Journal of ultrastructure research.
[68] C. Wiersma,et al. “Descending” neuronal units in the commissure of the crayfish central nervous system; and their integration of visual, tactile and proprioceptive stimuli , 1965, The Journal of comparative neurology.
[69] M. Egelhaaf. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .
[70] N. Strausfeld,et al. Resolution of intraneuronal and transynaptic migration of cobalt in the insect visual and central nervous systems , 1976, Journal of comparative physiology.
[71] N. J. Strausfeld,et al. Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .
[72] W REICHARDT,et al. Nervous integration in the facet eye. , 1962, Biophysical journal.
[73] S. Laughlin. Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .
[74] K. D. Roeder,et al. Organization of the ascending giant fiber system in the cockroach, Periplaneta americana. , 1948, The Journal of experimental zoology.
[75] M. E. Power. The thoracico‐abdominal nervous system of an adult insect, Drosophila melanogaster , 1948, The Journal of comparative neurology.
[76] Nicholas J. Strausfeld,et al. Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[77] H. Eckert,et al. Intracellular recording and staining of directionally selective motion detecting neurons in fly optic lobe , 1975, Vision Research.
[78] B. Mulloney. Interneurons in the central nervous system of flies and the start of flight , 1969, Zeitschrift für vergleichende Physiologie.
[79] Nicholas J. Strausfeld,et al. The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .
[80] Nicholas J. Strausfeld,et al. Organizational principles of outputs from Dipteran brains , 1984 .
[81] Martin Egelhaaf,et al. Visual course control in flies relies on neuronal computation of object and background motion , 1988, Trends in Neurosciences.
[82] Rüdiger Wehner,et al. The Bee’s E-Vector Compass , 1987 .
[83] M O'shea,et al. The neuronal basis of a sensory analyser, the acridid movement detector system. II. response decrement, convergence, and the nature of the excitatory afferents to the fan-like dendrites of the LGMD. , 1976, The Journal of experimental biology.
[84] K. Hausen. Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .
[85] C. Wiersma,et al. On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii girard , 1958, The Journal of comparative neurology.
[86] D. Young. Developmental neurobiology of arthropods , 1973 .
[87] J. Palka,et al. Diffraction and Visual Acuity of Insects , 1965, Science.
[88] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[89] J. Zeil,et al. A new kind of neural superposition eye: the compound eye of male Bibionidae , 1979, Nature.
[90] E. Liske,et al. The influence of head position on the flight behaviour of the fly. Calliphora erythrocephala , 1977 .
[91] C. Goodman,et al. Anatomy of the ocellar interneurons of acridid grasshoppers , 1976, Cell and Tissue Research.
[92] N. Strausfeld,et al. The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.
[93] R. Hengstenberg,et al. Compensatory head roll in the blowfly Calliphora during flight , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[94] N. Strausfeld. The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[95] R. Shapley,et al. Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.
[96] N. Strausfeld,et al. Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .
[97] N. J. Strausfeld,et al. Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala , 1985, Cell and Tissue Research.
[98] W Reichardt,et al. Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.
[99] D. King,et al. On neuronal homology: A comparison of similar axons in Musca, Sarcophaga, and Drosophila (Diptera: Schizophora) , 1983, The Journal of comparative neurology.
[100] N. Strausfeld,et al. Visuo-motor pathways in arthropods , 1986, Naturwissenschaften.
[101] G. Horridge. The Compound eye and vision of insects , 1975 .
[102] N. Strausfeld,et al. The organization of giant horizontal-motion-sensitive neurons and their synaptic relationships in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica , 1985, Cell and Tissue Research.
[103] Matti Järvilehto,et al. Lateral inhibition in an insect eye , 1972, Zeitschrift für vergleichende Physiologie.
[104] Rodney K. Murphey,et al. Positional information, compartments, and the cercal sensory system of crickets , 1986 .
[105] M. Cohen,et al. Branching of Central Neurons: Intracellular Cobalt Injection for Light and Electron Microscopy , 1972, Science.
[106] J. Levine,et al. Stereotaxic map of the muscle fibers in the indirect flight muscles of Drosophila melanogaster , 1973, Journal of morphology.
[107] R. Murphey. Maps in the Insect Nervous System, Their Implications for Synaptic Connectivity and Target Location in the Real World , 1983 .
[108] N. Strausfeld,et al. The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[109] C. Rowell,et al. A spike-transmitting electrical synapse between visual interneurones in the locust movement detector system , 1975, Journal of comparative physiology.
[110] T. Collett,et al. Binocular, Directionally Selective Neurones, Possibly Involved in the Optomotor Response of Insects , 1966, Nature.
[111] I. Meinertzhagen,et al. Synaptogenesis in the first optic neuropile of the fly's visual system , 1982, Journal of neurocytology.
[112] T. Poggio,et al. A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[113] V. Braitenberg. Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.
[114] M O'shea,et al. The neuronal basis of a sensory analyser, the acridid movement detector system. I. Effects of simple incremental and decremental stimuli in light and dark adapted animals. , 1976, The Journal of experimental biology.
[115] R. Hardie. Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.
[116] O. Trujillo-Cenóz. Some aspects of the structural organization of the arthropod eye. , 1965, Cold Spring Harbor symposia on quantitative biology.
[117] K. Hausen. The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .
[118] F. Zettler,et al. Neural principles in vision , 1976 .
[119] K. Hausen,et al. The synaptic organization of visual interneurons in the lobula complex of flies , 1980, Cell and Tissue Research.
[120] Nicholas J. Strausfeld,et al. The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.
[121] K. Pearson,et al. Neural Networks Controlling Locomotion in Locusts , 1985 .
[122] H. Hertel. Chromatic properties of identified interneurons in the optic lobes of the bee , 1980, Journal of comparative physiology.
[123] J Palka,et al. Discrimination between movements of eye and object by visual interneurones of crickets. , 1969, The Journal of experimental biology.
[124] R. Hengstenberg. Spike responses of ‘non-spiking’ visual interneurone , 1977, Nature.
[125] Sexual dimorphism in the visual system of flies: The divided brain of male Bibionidae (Diptera) , 2004, Cell and Tissue Research.
[126] L G Bishop,et al. Vertical motion detectors and their synaptic relations in the third optic lobe of the fly. , 1981, Journal of neurobiology.
[127] S. Wada. Spezielle randzonale ommatidien von Calliphora Erythrocephala meig. (diptera calliphoridae): Architektur der zentralen rhabdomeren-kolumne und topographie im komplexauge , 1974 .
[128] S. Shaw. Early visual processing in insects. , 1984, The Journal of experimental biology.
[129] Jeffrey C. Hall,et al. Development and Neurobiology of Drosophila , 1980, Basic Life Sciences.
[130] N. J. Strausfeld,et al. The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[131] Roland Hengstenberg,et al. Roll-Stabilization During Flight of the Blowfly’s Head and Body by Mechanical and Visual Cues , 1984 .
[132] F C Rind,et al. A chemical synapse between two motion detecting neurones in the locust brain. , 1984, The Journal of experimental biology.
[133] Boschek Cb. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .
[134] W. J. Heitler,et al. The locust jump. II. Neural circuits of the motor programme. , 1977, The Journal of experimental biology.
[135] R. Pierantoni,et al. A look into the cock-pit of the fly , 1976, Cell and Tissue Research.
[136] N. Strausfeld,et al. Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light , 1985, Cell and Tissue Research.
[137] C. H. F. Rowell,et al. Neuronal circuits controlling flight in the locust: how sensory information is processed for motor control , 1986, Trends in Neurosciences.
[138] F. Newell. Information Processing in the Visual Systems of Arthropods , 1973 .
[139] F. Claire Rind,et al. A DIRECTIONALLY SENSITIVE MOTION DETECTING NEURONE IN THE BRAIN OF A MOTH , 1983 .
[140] J. Bacon,et al. The tritocerebral commissure giant (TCG): A bimodal interneurone in the locust,Schistocerca gregaria , 1978, Journal of comparative physiology.
[141] R. Wyman,et al. Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.
[142] Werner Reichardt,et al. Processing of optical data by organisms and by machines , 1969 .
[143] R. Wyman,et al. Anatomy of the giant fibre pathway inDrosophila. I. Three thoracic components of the pathway , 1980, Journal of neurocytology.
[144] J. Kien. Morphology of locust neck muscle motoneurons and some of their inputs , 1980, Journal of comparative physiology.
[145] Erich Buchner,et al. NEUROANATOMICAL MAPPING OF VISUALLY INDUCED NERVOUS ACTIVITY IN INSECTS BY 3H-DEOXYGLUCOSE , 1984 .
[146] Integration and Analysis of Movement Information by the Visual System of Flies , 1970, Nature.
[147] E. Holst,et al. Das Reafferenzprinzip , 2004, Naturwissenschaften.