Precision in a rush: trade-offs between positioning and steepness of the hunchback expression pattern

Fly development amazes us by the precision and reproducibility of gene expression, especially since the initial expression patterns are established during very short nuclear cycles. Recent live imaging of hunchback promoter dynamics shows a stable steep binary expression pattern established within the three minute interphase of nuclear cycle 11. Considering expression models of different complexity we explore the trade-off between the ability of a regulatory system to produce a steep boundary and minimize expression variability between different nuclei. We show how a limited readout time imposed by short developmental cycles affects the gene’s ability to read positional information along the embryo’s anterior posterior axis and express reliably. Comparing our theoretical results to real-time monitoring of the hunchback transcription dynamics in live flies we discuss possible regulatory strategies, suggesting an important role for additional binding sites, additional gradients or non-equilibirum binding.

[1]  Antti Häkkinen,et al.  Temperature-Dependent Model of Multi-step Transcription Initiation in Escherichia coli Based on Live Single-Cell Measurements , 2016, PLoS Comput. Biol..

[2]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[3]  Ertugrul M. Ozbudak,et al.  Multistability in the lactose utilization network of Escherichia coli , 2004, Nature.

[4]  Aleksandra M. Walczak,et al.  Live Imaging of Bicoid-Dependent Transcription in Drosophila Embryos , 2013, Current Biology.

[5]  Nathalie Dostatni,et al.  High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. , 2010, Biophysical journal.

[6]  Ido Golding,et al.  Stochastic Kinetics of Nascent RNA. , 2016, Physical review letters.

[7]  J. Posakony,et al.  Posterior stripe expression of hunchback is driven from two promoters by a common enhancer element. , 1995, Development.

[8]  Alexander V. Spirov,et al.  The role of Bicoid cooperative binding in the patterning of sharp borders in Drosophila melanogaster. , 2012, Developmental biology.

[9]  Shreyas Mandre,et al.  Short-time dynamics of partial wetting. , 2008, Physical review letters.

[10]  S. Leibler,et al.  Establishment of developmental precision and proportions in the early Drosophila embryo , 2002, Nature.

[11]  Rob Phillips,et al.  Operator sequence alters gene expression independently of transcription factor occupancy in bacteria. , 2012, Cell reports.

[12]  Bartosz Walter,et al.  Moribund Ants Leave Their Nests to Die in Social Isolation , 2010, Current Biology.

[13]  Andre S. Ribeiro,et al.  SGNS2: a compartmentalized stochastic chemical kinetics simulator for dynamic cell populations , 2012, Bioinform..

[14]  J. Nagle,et al.  Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. , 1998, Genes & development.

[15]  M. Elowitz,et al.  Regulatory activity revealed by dynamic correlations in gene expression noise , 2008, Nature Genetics.

[16]  C. Desplan,et al.  Bicoid-independent formation of thoracic segments in Drosophila. , 2000, Science.

[17]  W. Bialek,et al.  Physical limits to biochemical signaling. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[18]  C. Fradin,et al.  The time to measure positional information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the onset of zygotic transcription , 2010, Development.

[19]  Shawn C. Little,et al.  Diverse spatial expression patterns emerge from common transcription bursting kinetics , 2017, 1712.08215.

[20]  Johan Hartman,et al.  Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing , 2018, Cell.

[21]  P. R. ten Wolde,et al.  Role of spatial averaging in the precision of gene expression patterns. , 2009, Physical review letters.

[22]  Pieter Rein ten Wolde,et al.  Mutual Repression Enhances the Steepness and Precision of Gene Expression Boundaries , 2012, PLoS Comput. Biol..

[23]  D. Bray,et al.  Receptor clustering as a cellular mechanism to control sensitivity , 1998, Nature.

[24]  F. Tostevin,et al.  The Berg-Purcell limit revisited. , 2014, Biophysical journal.

[25]  Heng Xu,et al.  COMBINING PROTEIN AND mRNA QUANTIFICATION TO DECIPHER TRANSCRIPTIONAL REGULATION , 2015, Nature Methods.

[26]  Eric F Wieschaus,et al.  Concentration dependent chromatin states induced by the bicoid morphogen gradient , 2017, bioRxiv.

[27]  G. Jiménez,et al.  Relief of gene repression by torso RTK signaling: role of capicua in Drosophila terminal and dorsoventral patterning. , 2000, Genes & development.

[28]  A. Hill,et al.  The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves , 1910 .

[29]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[30]  Dmitri Papatsenko,et al.  The role of binding site cluster strength in Bicoid-dependent patterning in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Bialek,et al.  Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient , 2007, Cell.

[32]  Ho-Ryun Chung,et al.  Bicoid - morphogen function revisited , 2010, Fly.

[33]  W. Bialek,et al.  Diffusion and scaling during early embryonic pattern formation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Stuart A Sevier,et al.  Properties of cooperatively induced phases in sensing models. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  H. Jäckle,et al.  Cooperative DNA‐binding by Bicoid provides a mechanism for threshold‐dependent gene activation in the Drosophila embryo , 1998, The EMBO journal.

[36]  Aleksandra M. Walczak,et al.  Trade-Offs in Delayed Information Transmission in Biochemical Networks , 2015, 1504.03637.

[37]  Jeremy Gunawardena,et al.  A Linear Framework for Time-Scale Separation in Nonlinear Biochemical Systems , 2012, PloS one.

[38]  Wouter-Jan Rappel,et al.  How input noise limits biochemical sensing in ultrasensitive systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Michael W. Perry,et al.  Precision of Hunchback Expression in the Drosophila Embryo , 2012, Current Biology.

[40]  Hernan G. Garcia,et al.  LlamaTags: A Versatile Tool to Image Transcription Factor Dynamics in Live Embryos , 2018, Cell.

[41]  A. Coulon,et al.  Kinetic competition during the transcription cycle results in stochastic RNA processing , 2014, eLife.

[42]  Timothy E Saunders,et al.  Decoding temporal interpretation of the morphogen Bicoid in the early Drosophila embryo , 2017, Mechanisms of Development.

[43]  Gasper Tkacik,et al.  Positional information, in bits , 2010, Proceedings of the National Academy of Sciences.

[44]  Claude Desplan,et al.  A caudal mRNA gradient controls posterior development in the wasp Nasonia , 2006, Development.

[45]  Aleksandra M. Walczak,et al.  Precision of Readout at the hunchback Gene: Analyzing Short Transcription Time Traces in Living Fly Embryos , 2016, PLoS Comput. Biol..

[46]  L. Mirny,et al.  Kinetics of protein-DNA interaction: facilitated target location in sequence-dependent potential. , 2004, Biophysical journal.

[47]  Hernan G. Garcia,et al.  Quantitative Imaging of Transcription in Living Drosophila Embryos Links Polymerase Activity to Patterning , 2013, Current Biology.

[48]  Jeremy Gunawardena,et al.  Information Integration and Energy Expenditure in Gene Regulation , 2016, Cell.

[49]  N. Dostatni,et al.  Bicoid Determines Sharp and Precise Target Gene Expression in the Drosophila Embryo , 2005, Current Biology.

[50]  Gašper Tkačik,et al.  Decoding of position in the developing neural tube from antiparallel morphogen gradients , 2017, Science.

[51]  David S. Lorberbaum,et al.  Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development , 2017, eLife.

[52]  Michael Levine,et al.  Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo , 2011, Proceedings of the National Academy of Sciences.

[53]  R. MacKinnon,et al.  Quantitative analysis of mammalian GIRK2 channel regulation by G proteins, the signaling lipid PIP2 and Na+ in a reconstituted system , 2014, eLife.

[54]  P. R. ten Wolde,et al.  Fundamental Limits to Cellular Sensing , 2015, 1505.06577.

[55]  Julien O. Dubuis,et al.  Positional Information, Positional Error, and Readout Precision in Morphogenesis: A Mathematical Framework , 2014, Genetics.

[56]  Ho-Ryun Chung,et al.  Antagonistic action of Bicoid and the repressor Capicua determines the spatial limits of Drosophila head gene expression domains , 2009, Proceedings of the National Academy of Sciences.

[57]  T. Scarborough,et al.  The Drosophila morphogenetic protein Bicoid binds DNA cooperatively. , 1996, Development.

[58]  A. Berezhkovskii,et al.  Effect of ligand diffusion on occupancy fluctuations of cell-surface receptors. , 2013, The Journal of chemical physics.

[59]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[60]  Nathalie Dostatni,et al.  The Bicoid Morphogen System , 2010, Current Biology.

[61]  Johannes Jaeger,et al.  Cellular and Molecular Life Sciences REVIEW The gap gene network , 2022 .

[62]  W. Bialek,et al.  Probing the Limits to Positional Information , 2007, Cell.

[63]  H. Berg,et al.  Physics of chemoreception. , 1977, Biophysical journal.

[64]  Wolfgang Driever,et al.  Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen , 1989, Nature.

[65]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[66]  H. Berg,et al.  Receptor sensitivity in bacterial chemotaxis , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Rob Phillips,et al.  Promoter architecture dictates cell-to-cell variability in gene expression , 2014, Science.

[68]  Jeremy Gunawardena,et al.  Energy-speed-accuracy relation in complex networks for biological discrimination. , 2017, Physical review. E.

[69]  C. Nüsslein-Volhard,et al.  The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner , 1988, Cell.

[70]  W. Bialek,et al.  Cooperativity, sensitivity, and noise in biochemical signaling. , 2005, Physical review letters.

[71]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[72]  C. Fradin,et al.  Live Imaging of mRNA Transcription in Drosophila Embryos. , 2018, Methods in molecular biology.

[73]  Ned S Wingreen,et al.  Dynamics of cooperativity in chemical sensing among cell-surface receptors. , 2011, Physical review letters.

[74]  Mustafa Mir,et al.  Dense Bicoid hubs accentuate binding along the morphogen gradient , 2017, bioRxiv.

[75]  G. Gibson,et al.  Effects of ectopic expression of caudal during Drosophila development. , 1990, Development.