Tuning capacitors Vaccuum Feeder ( 30 Ohms ) Radiating strap Faraday screen Port flange Lateral bumpers Capacitor positioning unit Vacuum feedthrough Feeder ( 30 Ω ) Quarter-wavelength stub

Long pulse operation on the Tore Supra tokamak has entered a new phase, characterized by the use of heating power level in excess of 10 MW, during pulses lasting several tens of resistive times. This has been made possible by the use of ion cyclotron range of frequency (ICRF) heating (9 MW coupled to the plasma at 57 MHz), combined with lower hybrid current drive (LHCD: 3 MW at 3.7 GHz) and efficient fuelling techniques (supersonic gas injection, pellets). This paper addresses key technological, operational and physics issues related to the long pulse operation of the Tore Supra ICRF system and required for a reactor: R&D on the ICRF plant, real-time control and safety procedures, integration with other tokamak subsystems, experimental investigation and theoretical modelling of the edge ICRF physics (wave coupling, heat loads on antenna front faces). As far as possible lessons are drawn from the experience gained on Tore Supra for the design and operation of a next-step device.

[1]  J. Bucalossi,et al.  Scrape-off layer flows in the Tore Supra tokamak , 2006 .

[2]  D. Guilhem,et al.  Tore-Supra infrared thermography system, a real steady-state diagnostic , 2005 .

[3]  Sylvain Brémond,et al.  First results of the Tore Supra ITER like ICRF antenna prototype , 2005 .

[4]  L. Colas,et al.  Effects of coupling and asymmetries on load resilience of IC ITER‐like structures , 2005 .

[5]  Sylvain Brémond,et al.  Automatic control of ITER‐like structures , 2005 .

[6]  B. Beaumont,et al.  Heat Loads On Tore Supra ICRF Launchers Plasma Facing Components , 2005 .

[7]  G. Hoang Long pulse, multi-MW operation in Tore Supra , 2005 .

[8]  L. Colas,et al.  RF current distribution and topology of RF sheath potentials in front of ICRF antennae , 2005 .

[9]  V. Parail,et al.  Bright spots generated by lower hybrid waves on JET , 2005 .

[10]  Eric Gauthier,et al.  Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak , 2005 .

[11]  L. Colas,et al.  Parametric study of 2D potential structures induced by RF sheaths coupled with transverse currents in front of ICRH antenna , 2005 .

[12]  J. Bucalossi,et al.  The response of the Tore Supra edge plasma to supersonic pulsed gas injection , 2005 .

[13]  F. Clairet,et al.  ICRF coupling and edge density profile on Tore Supra , 2004 .

[14]  P. T. Bonoli,et al.  Investigation of performance limiting phenomena in a variable phase ICRF antenna in Alcator C-Mod , 2004 .

[15]  A. Becoulet,et al.  Recent fully non-inductive operation results in Tore Supra with 6?min, 1?GJ plasma discharges , 2004 .

[16]  T. Loarer,et al.  Evolution of Carbon Tiles During Repetitive Long Pulse Operation in TORE SUPRA , 2004 .

[17]  J. Contributors,et al.  Experiments on ICRF Coupling with Different Phasings , 2004 .

[18]  B. Beaumont,et al.  Density Convection near Radiating ICRF Antennas and its Effect on the Coupling of Lower Hybrid Waves , 2003 .

[19]  Sylvain Brémond,et al.  Tore supra ICRH antenna prototype for next step devices , 2003 .

[20]  B. Beaumont,et al.  High power density and long pulse operation with Tore Supra ICRF facility , 2003 .

[21]  G. Bosia,et al.  High-Power Density Ion Cyclotron Antennas for Next Step Applications , 2003 .

[22]  D. Reiter,et al.  Supersonic gas injection on Tore Supra , 2003 .

[23]  J. Ané,et al.  Heat flux pattern on the toroidal pump limiter of Tore Supra: first observations and preliminary analysis , 2003 .

[24]  T. Loarer,et al.  Calorimetry in Tore Supra.: An accurate tool and a benchmark for ITER , 2003 .

[25]  L. Colas,et al.  Global analysis of ICRF wave coupling on Tore Supra , 2003 .

[26]  A. Becoulet,et al.  Hot spot phenomena on Tore Supra ICRF antennas investigated by optical diagnostics , 2003 .

[27]  E. Chatelier,et al.  REAL TIME CONTROL OF LONG DURATION PLASMA DISCHARGES IN TORE SUPRA , 2003 .

[28]  S. Heuraux,et al.  Numerical modeling of the coupling of an ICRH antenna with a plasma with self-consistent antenna currents , 2002 .

[29]  L. Colas,et al.  Edge plasma density convection during ion cyclotron resonance heating on Tore Supra , 2002 .

[30]  Pascal Garin,et al.  Actively cooled plasma facing components in Tore Supra , 2001 .

[31]  A. Becoulet,et al.  Tore Supra steady-state power and particle injection: the ‘CIMES’ project , 2001 .

[32]  B. Beaumont,et al.  First plasma experiments in Tore Supra with a new generation of high heat flux limiters for RF antennas , 2000 .

[33]  V. Basiuk,et al.  High ICRF power in Tore Supra , 1999 .

[34]  M. Goniche,et al.  Localized heat flux due to lower hybrid wave coupling in the Ergodic Divertor configuration on Tore Supra , 1999 .

[35]  Y. Demers,et al.  Enhanced heat flux in the scrape-off layer due to electrons accelerated in the near field of lower hybrid grills , 1998 .

[36]  Sylvain Brémond,et al.  First Results of Automatic Matching System on Tore Supra ICRH Antennas; Fast Matching Network for ICRH Systems**SPINNER Gmbh Erzgiessereistrasse 33 8000Munich 2 RFA , 1997 .

[37]  V. Fuchs,et al.  Acceleration of electrons in the vicinity of a lower hybrid waveguide array , 1996 .

[38]  Y. Ikeda,et al.  Ripple enhanced banana drift loss at the outboard wall during ICRF/NBI heating in JT-60 U , 1996 .

[39]  J. Jacquinot,et al.  Radio‐frequency‐sheath‐driven edge plasma convection and interaction with the H mode , 1993 .

[40]  F. W. Perkins,et al.  Radiofrequency sheaths and impurity generation by ICRF antennas , 1989 .

[41]  B. Beaumont,et al.  TORE SUPRA ICRH ANTENNAE ARRAY , 1989 .

[42]  G. Agarici,et al.  THE ICRH SYSTEM FOR TORE SUPRA , 1989 .

[43]  D. J. Hoffman,et al.  ICRF antenna and feedthrough development at the Oak Ridge National Laboratory , 1985 .

[44]  G. Bach,et al.  XCIII. The cross section for the reaction 10B(pα)7Be at proton energies below 200 kev , 1955 .