The Evolutionary History of Plasmodium vivax as Inferred from Mitochondrial Genomes: Parasite Genetic Diversity in the Americas

Plasmodium vivax is the most prevalent human malaria parasite in the Americas. Previous studies have contrasted the genetic diversity of parasite populations in the Americas with those in Asia and Oceania, concluding that New World populations exhibit low genetic diversity consistent with a recent introduction. Here we used an expanded sample of complete mitochondrial genome sequences to investigate the diversity of P. vivax in the Americas as well as in other continental populations. We show that the diversity of P. vivax in the Americas is comparable to that in Asia and Oceania, and we identify several divergent clades circulating in South America that may have resulted from independent introductions. In particular, we show that several haplotypes sampled in Venezuela and northeastern Brazil belong to a clade that diverged from the other P. vivax lineages at least 30,000 years ago, albeit not necessarily in the Americas. We propose that, unlike in Asia where human migration increases local genetic diversity, the combined effects of the geographical structure and the low incidence of vivax malaria in the Americas has resulted in patterns of low local but high regional genetic diversity. This could explain previous views that P. vivax in the Americas has low genetic diversity because these were based on studies carried out in limited areas. Further elucidation of the complex geographical pattern of P. vivax variation will be important both for diversity assessments of genes encoding candidate vaccine antigens and in the formulation of control and surveillance measures aimed at malaria elimination.

[1]  D. Leles,et al.  Studies on protozoa in ancient remains - A Review , 2013, Memorias do Instituto Oswaldo Cruz.

[2]  Diego F. Echeverry,et al.  Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region , 2013, BMC Genetics.

[3]  A. Escalante,et al.  Local population structure of Plasmodium: impact on malaria control and elimination , 2012, Malaria Journal.

[4]  D. Serre,et al.  Whole Genome Sequencing of Field Isolates Provides Robust Characterization of Genetic Diversity in Plasmodium vivax , 2012, PLoS neglected tropical diseases.

[5]  N. White,et al.  New global estimates of malaria deaths , 2012, The Lancet.

[6]  S. P. Kachur,et al.  New global estimates of malaria deaths , 2012, The Lancet.

[7]  A. Dash,et al.  The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum , 2012, Nature Genetics.

[8]  M. Allison,et al.  Paleopathology in South American Mummies: A Review and New Findings , 2012, Pathobiology.

[9]  H. Trivedi,et al.  Plasmodium vivax Malaria–associated Acute Kidney Injury, India, 2010–2011 , 2012, Emerging infectious diseases.

[10]  R. Price,et al.  The anaemia of Plasmodium vivax malaria , 2012, Malaria Journal.

[11]  L. Jones-Engel,et al.  The Origin of Malarial Parasites in Orangutans , 2012, PloS one.

[12]  Aparup Das,et al.  Inferring the evolutionary history of Indian Plasmodium vivax from population genetic analyses of multilocus nuclear DNA fragments , 2012, Molecular ecology.

[13]  A. Escalante,et al.  Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax , 2012, Malaria Journal.

[14]  M. Suchard,et al.  Bayesian Phylogenetics with BEAUti and the BEAST 1.7 , 2012, Molecular biology and evolution.

[15]  L. Cui,et al.  Plasmodium vivax populations revisited: mitochondrial genomes of temperate strains in Asia suggest ancient population expansion , 2012, BMC Evolutionary Biology.

[16]  Nancy Fullman,et al.  Global malaria mortality between 1980 and 2010: a systematic analysis , 2012, The Lancet.

[17]  A. Barry,et al.  Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination , 2012, Malaria Journal.

[18]  F. Ayala,et al.  Multiple independent introductions of Plasmodium falciparum in South America , 2011, Proceedings of the National Academy of Sciences.

[19]  C. Coban,et al.  The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing , 2011, PloS one.

[20]  C. Dye,et al.  Worldwide Incidence of Malaria in 2009: Estimates, Time Trends, and a Critique of Methods , 2011, PLoS medicine.

[21]  M. U. Ferreira,et al.  Molecular markers and genetic diversity of Plasmodium vivax. , 2011, Memorias do Instituto Oswaldo Cruz.

[22]  Gabor T. Marth,et al.  Demographic history and rare allele sharing among human populations , 2011, Proceedings of the National Academy of Sciences.

[23]  Scott Jackson,et al.  Molecular evidence for a single evolutionary origin of domesticated rice , 2011, Proceedings of the National Academy of Sciences.

[24]  A. Siqueira,et al.  Severe Plasmodium vivax Malaria, Brazilian Amazon , 2010, Emerging infectious diseases.

[25]  Juliana M. Sá,et al.  Single-nucleotide polymorphism, linkage disequilibrium and geographic structure in the malaria parasite Plasmodium vivax: prospects for genome-wide association studies , 2010, BMC Genetics.

[26]  Jeet Sukumaran,et al.  DendroPy: a Python library for phylogenetic computing , 2010, Bioinform..

[27]  U. d’Alessandro,et al.  Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon , 2010, Malaria Journal.

[28]  E. Tarazona-Santos,et al.  Microsatellite loci: determining the genetic variability of Plasmodium vivax , 2010, Tropical medicine & international health : TM & IH.

[29]  L. Excoffier,et al.  Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows , 2010, Molecular ecology resources.

[30]  Omar E. Cornejo,et al.  On the Diversity of Malaria Parasites in African Apes and the Origin of Plasmodium falciparum from Bonobos , 2010, PLoS pathogens.

[31]  A. Drummond,et al.  Bayesian Inference of Species Trees from Multilocus Data , 2009, Molecular biology and evolution.

[32]  Alexei J. Drummond,et al.  Bayesian Phylogeography Finds Its Roots , 2009, PLoS Comput. Biol..

[33]  J. Baird,et al.  Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. , 2009, The Lancet. Infectious diseases.

[34]  Pablo Librado,et al.  DnaSP v5: a software for comprehensive analysis of DNA polymorphism data , 2009, Bioinform..

[35]  Kam‐biu Liu,et al.  Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago , 2009, Proceedings of the National Academy of Sciences.

[36]  D. Posada jModelTest: phylogenetic model averaging. , 2008, Molecular biology and evolution.

[37]  A. Hughes,et al.  Polymorphism at the apical membrane antigen 1 locus reflects the world population history of Plasmodium vivax , 2008, BMC Evolutionary Biology.

[38]  X. Su,et al.  Local Adaptation and Vector-Mediated Population Structure in Plasmodium vivax Malaria , 2008, Molecular biology and evolution.

[39]  T. Goebel,et al.  The Late Pleistocene Dispersal of Modern Humans in the Americas , 2008, Science.

[40]  D. Hartl,et al.  Extensive microsatellite diversity in the human malaria parasite Plasmodium vivax. , 2008, Gene.

[41]  P. Newton,et al.  Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. , 2007, International journal for parasitology.

[42]  Andrew J Tatem,et al.  Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project , 2007, Malaria Journal.

[43]  R. Price,et al.  Lung injury in vivax malaria: pathophysiological evidence for pulmonary vascular sequestration and posttreatment alveolar-capillary inflammation. , 2007, The Journal of infectious diseases.

[44]  Omar E. Cornejo,et al.  The origin and age of Plasmodium vivax. , 2006, Trends in parasitology.

[45]  A. Hughes,et al.  Mitochondrial genome sequences support ancient population expansion in Plasmodium vivax. , 2005, Molecular biology and evolution.

[46]  Michael A Charleston,et al.  Host switch leads to emergence of Plasmodium vivax malaria in humans. , 2005, Molecular biology and evolution.

[47]  B. Singer,et al.  Was malaria present in the Amazon before the European conquest? Available evidence and future research agenda , 2005 .

[48]  Omar E. Cornejo,et al.  A monkey's tale: the origin of Plasmodium vivax as a human malaria parasite. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[49]  A. Das,et al.  Plasmodium vivax Malaria , 2005, Emerging infectious diseases.

[50]  G. Snounou,et al.  The genetic diversity of Plasmodium vivax populations. , 2003, Trends in parasitology.

[51]  M. Stephens,et al.  Traces of Human Migrations in Helicobacter pylori Populations , 2003, Science.

[52]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[53]  J. Hein,et al.  Consequences of recombination on traditional phylogenetic analysis. , 2000, Genetics.

[54]  R. Hudson,et al.  A new statistic for detecting genetic differentiation. , 2000, Genetics.

[55]  G. Churchill,et al.  Properties of statistical tests of neutrality for DNA polymorphism data. , 1995, Genetics.

[56]  W. Collins,et al.  Primate malarias. , 1974, Advances in veterinary science and comparative medicine.

[57]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[58]  J. Carlton,et al.  Genomics, population genetics and evolutionary history of Plasmodium vivax. , 2013, Advances in parasitology.

[59]  Organização Mundial de Saúde,et al.  World malaria report 2011 , 2011 .

[60]  T. McCutchan,et al.  Geographic subdivision of the range of the malaria parasite Plasmodium vivax. , 2001, Emerging infectious diseases.