A Faster Algorithm for Finding Minimum Tucker Submatrices

A binary matrix has the Consecutive Ones Property (C1P) if its columns can be ordered in such a way that all 1s on each row are consecutive. Algorithmic issues of the C1P are central in computational molecular biology, in particular for physical mapping and ancestral genome reconstruction. In 1972, Tucker gave a characterization of matrices that have the C1P by a set of forbidden submatrices, and a substantial amount of research has been devoted to the problem of efficiently finding such a minimum size forbidden submatrix. This paper presents a new O(Δ3m2(mΔ+n3)) time algorithm for this particular task for a m×n binary matrix with at most Δ 1-entries per row, thereby improving the O(Δ3m2(mn+n3)) time algorithm of M. Dom, J. Guo and R. Niedermeier [Approximation and fixed-parameter algorithms for consecutive ones submatrix problems, Journal of Computer and System Sciences, 76(3–4): 204–221, 2010]. Moreover, this approach can be used—with a much heavier machinery—to address harder problems related to Minimal Conflicting Set [G. Blin, R. Rizzi, and S. Vialette. A Polynomial-Time Algorithm for Finding Minimal Conflicting Sets, Proc. 6th International Computer Science Symposium in Russia (CSR), [2011]].

[1]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[2]  Dorothea Wagner,et al.  Station Location - Complexity and Approximation , 2005, ATMOS.

[3]  Daniel Bienstock,et al.  On the complexity of testing for odd holes and induced odd paths , 1991, Discret. Math..

[4]  Bruce Hendrickson,et al.  A Spectral Algorithm for Seriation and the Consecutive Ones Problem , 1999, SIAM J. Comput..

[5]  Ján Manuch,et al.  On the Gapped Consecutive-Ones Property , 2009, Electron. Notes Discret. Math..

[6]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[7]  Arthur F. Veinott,et al.  Optimal Capacity Scheduling---II , 1962 .

[8]  Romeo Rizzi,et al.  A Polynomial-Time Algorithm for Finding a Minimal Conflicting Set Containing a Given Row , 2011, CSR.

[9]  Michele Conforti,et al.  Structural properties and decomposition of linear balanced matrices , 1992, Math. Program..

[10]  Refael Hassin,et al.  Approximation algorithms for hitting objects with straight lines , 1991, Discret. Appl. Math..

[11]  Rolf H. Möhring,et al.  An Incremental Linear-Time Algorithm for Recognizing Interval Graphs , 1989, SIAM J. Comput..

[12]  Rolf Niedermeier,et al.  Approximation and fixed-parameter algorithms for consecutive ones submatrix problems , 2010, J. Comput. Syst. Sci..

[13]  Wen-Lian Hsu,et al.  A Simple Test for the Consecutive Ones Property , 1992, J. Algorithms.

[14]  Mohammad Taghi Hajiaghayi,et al.  A note on the Consecutive Ones Submatrix problem , 2002, Inf. Process. Lett..

[15]  Michael Dom,et al.  Algorithimic Aspects of the Consecutive-Ones Property , 2009, Bull. EATCS.

[16]  Lawrence T. Kou,et al.  Polynomial Complete Consecutive Information Retrieval Problems , 1977, SIAM J. Comput..

[17]  Ross M. McConnell A certifying algorithm for the consecutive-ones property , 2004, SODA '04.

[18]  Wen-Lian Hsu,et al.  A Test for the Consecutive Ones Property on Noisy Data - Application to Physical Mapping and Sequence Assembly , 2003, J. Comput. Biol..

[19]  David Sankoff,et al.  Common Intervals and Symmetric Difference in a Model-Free Phylogenomics, with an Application to Streptophyte Evolution , 2006, Comparative Genomics.

[20]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[21]  Geoffrey Zweig,et al.  Physical mapping of chromosomes using unique probes , 1994, SODA '94.

[22]  Louxin Zhang,et al.  The Consecutive Ones Submatrix Problem for Sparse Matrices , 2007, Algorithmica.

[23]  Anita Schöbel,et al.  Set covering with almost consecutive ones property , 2004, Discret. Optim..

[24]  James B. Orlin,et al.  Cyclic Scheduling via Integer Programs with Circular Ones , 1980, Oper. Res..

[25]  Dorit S. Hochbaum,et al.  Cyclical scheduling and multi-shift scheduling: Complexity and approximation algorithms , 2006, Discret. Optim..

[26]  Cédric Chauve,et al.  A Methodological Framework for the Reconstruction of Contiguous Regions of Ancestral Genomes and Its Application to Mammalian Genomes , 2008, PLoS Comput. Biol..

[27]  Martin Middendorf,et al.  On Physical Mapping and the Consecutive Ones Property for Sparse Matrices , 1996, Discret. Appl. Math..

[28]  Tamon Stephen,et al.  Minimal Conflicting Sets for the Consecutive Ones Property in Ancestral Genome Reconstruction , 2010, J. Comput. Biol..

[29]  J. Manuch,et al.  The gapped consecutive-ones property , 2012 .

[30]  A. Tucker,et al.  A structure theorem for the consecutive 1's property☆ , 1972 .

[31]  Gerhard Reinelt,et al.  The simultaneous consecutive ones problem , 2009, Theor. Comput. Sci..

[32]  Gerhard Reinelt,et al.  Consecutive Ones and a Betweenness Problem in Computational Biology , 1998, IPCO.

[33]  João Meidanis,et al.  On the Consecutive Ones Property , 1998, Discret. Appl. Math..

[34]  Wen-Lian Hsu,et al.  PC trees and circular-ones arrangements , 2003, Theor. Comput. Sci..

[35]  Dorothea Wagner,et al.  Solving Geometric Covering Problems by Data Reduction , 2004, ESA.

[36]  Huimin Zhang,et al.  Computing H/D-exchange speeds of single residues from data of peptic fragments , 2008, SAC '08.

[37]  Michael Jünger,et al.  A Branch-and-Cut Approach to Physical Mapping of Chromosomes by Unique End-Probes , 1997, J. Comput. Biol..