Robust PCA, Subspace Learning, and Tracking

[1]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[2]  Gonzalo Mateos,et al.  Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization , 2011, IEEE Transactions on Signal Processing.

[3]  Lawrence Carin,et al.  Bayesian Robust Principal Component Analysis , 2011, IEEE Transactions on Image Processing.

[4]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[5]  Kun Li,et al.  Foreground–Background Separation From Video Clips via Motion-Assisted Matrix Restoration , 2015, IEEE Transactions on Circuits and Systems for Video Technology.

[6]  Namrata Vaswani,et al.  Real-time Robust Principal Components' Pursuit , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[7]  Ricardo Otazo Low-Rank and Sparse Matrix Decomposition for Accelerated Dynamic MRI , 2013 .

[8]  Yingbin Liang,et al.  Provable Non-convex Phase Retrieval with Outliers: Median TruncatedWirtinger Flow , 2016, ICML.

[9]  Wei Lu,et al.  Modified-CS: Modifying compressive sensing for problems with partially known support , 2009, 2009 IEEE International Symposium on Information Theory.

[10]  René Vidal,et al.  Subspace Clustering , 2011, IEEE Signal Processing Magazine.

[11]  Constantine Caramanis,et al.  Robust Matrix Completion and Corrupted Columns , 2011, ICML.

[12]  Xin Li,et al.  Simultaneous Video Stabilization and Moving Object Detection in Turbulence , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Sergios Theodoridis,et al.  An Adaptive Projected Subgradient based algorithm for robust subspace tracking , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[14]  Gilad Lerman,et al.  Robust Stochastic Principal Component Analysis , 2014, AISTATS.

[15]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[16]  Bin Yang,et al.  Projection approximation subspace tracking , 1995, IEEE Trans. Signal Process..

[17]  James M. Rehg,et al.  GOSUS: Grassmannian Online Subspace Updates with Structured-Sparsity , 2013, 2013 IEEE International Conference on Computer Vision.

[18]  Namrata Vaswani,et al.  Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated , 2016, NIPS.

[19]  Jason Morphett,et al.  An integrated algorithm of incremental and robust PCA , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[20]  Guillaume-Alexandre Bilodeau,et al.  Improving background subtraction using Local Binary Similarity Patterns , 2014, IEEE Winter Conference on Applications of Computer Vision.

[21]  Namrata Vaswani,et al.  Online matrix completion and online robust PCA , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[22]  Namrata Vaswani,et al.  Recursive sparse recovery in large but correlated noise , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Namrata Vaswani,et al.  An Online Algorithm for Separating Sparse and Low-Dimensional Signal Sequences From Their Sum , 2013, IEEE Transactions on Signal Processing.

[24]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[25]  A. Robert Calderbank,et al.  PETRELS: Parallel Subspace Estimation and Tracking by Recursive Least Squares From Partial Observations , 2012, IEEE Transactions on Signal Processing.

[26]  Namrata Vaswani,et al.  Recursive Robust PCA or Recursive Sparse Recovery in Large but Structured Noise , 2012, IEEE Transactions on Information Theory.

[27]  Selin Aviyente,et al.  Recursive Tensor Subspace Tracking for Dynamic Brain Network Analysis , 2017, IEEE Transactions on Signal and Information Processing over Networks.

[28]  Sergios Theodoridis,et al.  Robust Subspace Tracking With Missing Entries: The Set-Theoretic Approach , 2015, IEEE Transactions on Signal Processing.

[29]  Guillaume-Alexandre Bilodeau,et al.  Universal Background Subtraction Using Word Consensus Models , 2016, IEEE Transactions on Image Processing.

[30]  Namrata Vaswani,et al.  Finite sample guarantees for PCA in non-isotropic and data-dependent noise , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  John Wright,et al.  Compressive principal component pursuit , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[32]  Alan L. Yuille,et al.  Robust principal component analysis by self-organizing rules based on statistical physics approach , 1995, IEEE Trans. Neural Networks.

[33]  Gilad Lerman,et al.  A novel M-estimator for robust PCA , 2011, J. Mach. Learn. Res..

[34]  Aswin C. Sankaranarayanan,et al.  SpaRCS: Recovering low-rank and sparse matrices from compressive measurements , 2011, NIPS.

[35]  Martin Kleinsteuber,et al.  pROST: a smoothed $$\ell _p$$ℓp-norm robust online subspace tracking method for background subtraction in video , 2013, Machine Vision and Applications.

[36]  Martin Kleinsteuber,et al.  pROST : A Smoothed Lp-norm Robust Online Subspace Tracking Method for Realtime Background Subtraction in Video , 2013, ArXiv.

[37]  Hong Zhang,et al.  COROLA: A Sequential Solution to Moving Object Detection Using Low-rank Approximation , 2015, Comput. Vis. Image Underst..

[38]  Shie Mannor,et al.  Outlier-Robust PCA: The High-Dimensional Case , 2013, IEEE Transactions on Information Theory.

[39]  Laura Balzano,et al.  Incremental gradient on the Grassmannian for online foreground and background separation in subsampled video , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Vincenzo Verardi Robust principal component analysis in Stata , 2009 .

[41]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[42]  Namrata Vaswani,et al.  Video denoising via online sparse and low-rank matrix decomposition , 2016, 2016 IEEE Statistical Signal Processing Workshop (SSP).

[43]  Fatih Murat Porikli,et al.  CDnet 2014: An Expanded Change Detection Benchmark Dataset , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[44]  Shijie Li,et al.  Reinforced Robust Principal Component Pursuit , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[45]  Namrata Vaswani,et al.  Robust PCA With Partial Subspace Knowledge , 2014, IEEE Transactions on Signal Processing.

[46]  M. Hubert,et al.  A fast method for robust principal components with applications to chemometrics , 2002 .

[47]  Constantine Caramanis,et al.  Robust Matrix Completion with Corrupted Columns , 2011, ArXiv.

[48]  Xiaochun Cao,et al.  Total Variation Regularized RPCA for Irregularly Moving Object Detection Under Dynamic Background , 2016, IEEE Transactions on Cybernetics.

[49]  Namrata Vaswani,et al.  Support-Predicted Modified-CS for recursive robust principal components' Pursuit , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[50]  Joel A. Tropp,et al.  Robust Computation of Linear Models by Convex Relaxation , 2012, Foundations of Computational Mathematics.

[51]  Hassan Mansour,et al.  A robust online subspace estimation and tracking algorithm , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[52]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[53]  Lei Zhang,et al.  Robust Online Matrix Factorization for Dynamic Background Subtraction , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Yonina C. Eldar,et al.  Low-Rank Phase Retrieval , 2016, IEEE Transactions on Signal Processing.

[55]  Guillaume-Alexandre Bilodeau,et al.  SuBSENSE: A Universal Change Detection Method With Local Adaptive Sensitivity , 2015, IEEE Transactions on Image Processing.

[56]  Soon Ki Jung,et al.  Robust background subtraction to global illumination changes via multiple features-based online robust principal components analysis with Markov random field , 2015, J. Electronic Imaging.

[57]  Shuicheng Yan,et al.  Online Robust PCA via Stochastic Optimization , 2013, NIPS.

[58]  Wen Gao,et al.  Background Subtraction via generalized fused lasso foreground modeling , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, IEEE Transactions on Information Theory.

[60]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[61]  Namrata Vaswani,et al.  Provable Dynamic Robust PCA or Robust Subspace Tracking , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[62]  El-hadi Zahzah,et al.  LRSLibrary: Low-Rank and Sparse tools for Background Modeling and Subtraction in Videos , 2016 .

[63]  Danijel Skocaj,et al.  Weighted and robust incremental method for subspace learning , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[64]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[65]  Xin Liu,et al.  Background subtraction based on low-rank and structured sparse decomposition. , 2015, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[66]  N. Campbell Robust Procedures in Multivariate Analysis I: Robust Covariance Estimation , 1980 .

[67]  Loong Fah Cheong,et al.  Block-Sparse RPCA for Salient Motion Detection , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Guillermo Sapiro,et al.  Learning Robust Low-Rank Representations , 2012, ArXiv.

[69]  John Wright,et al.  Dense Error Correction Via $\ell^1$-Minimization , 2010, IEEE Transactions on Information Theory.

[70]  Morteza Mardani,et al.  Dynamic Anomalography: Tracking Network Anomalies Via Sparsity and Low Rank , 2012, IEEE Journal of Selected Topics in Signal Processing.

[71]  Morteza Mardani,et al.  Recovery of Low-Rank Plus Compressed Sparse Matrices With Application to Unveiling Traffic Anomalies , 2012, IEEE Transactions on Information Theory.

[72]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[73]  Paul Rodríguez,et al.  Incremental Principal Component Pursuit for Video Background Modeling , 2016, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[74]  Christophe Croux,et al.  A Fast Algorithm for Robust Principal Components Based on Projection Pursuit , 1996 .

[75]  Yingbin Liang,et al.  Median-Truncated Nonconvex Approach for Phase Retrieval With Outliers , 2016, IEEE Transactions on Information Theory.

[76]  Jingdong Wang,et al.  A Probabilistic Approach to Robust Matrix Factorization , 2012, ECCV.

[77]  Soon Ki Jung,et al.  Spatiotemporal Low-Rank Modeling for Complex Scene Background Initialization , 2018, IEEE Transactions on Circuits and Systems for Video Technology.

[78]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[79]  Xiaowei Zhou,et al.  Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[80]  Namrata Vaswani,et al.  MEDRoP: Memory-Efficient Dynamic Robust PCA , 2017, ArXiv.

[81]  Robert D. Nowak,et al.  Online identification and tracking of subspaces from highly incomplete information , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[82]  Shie Mannor,et al.  Online PCA for Contaminated Data , 2013, NIPS.