Mobile Computing, Internet of Things, and Big Data for Urban Informatics

Urban informatics is emerging as a new discipline for cities and governments to improve the lives of citizens using information technology. In this advanced seminar, we introduce the key challenges and opportunities in urban informatics, discuss topics in mobile computing, Internet of Things (IoT) and big data analytics, to advance the state-of-the-art in urban informatics and provide interesting use cases. This seminar is designed for academicians, researchers, city administrators/planners, application developers, and research students with background in mobile computing and database systems.

[1]  Ashiq Anjum,et al.  Cloud Based Big Data Analytics for Smart Future Cities , 2013, UCC.

[2]  Anthony Townsend,et al.  Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia , 2013 .

[3]  Michael Batty,et al.  Big data, smart cities and city planning , 2013, Dialogues in human geography.

[4]  Tom White,et al.  Hadoop: The Definitive Guide , 2009 .

[5]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[6]  Milind R. Naphade,et al.  Smarter Cities and Their Innovation Challenges , 2011, Computer.

[7]  Joseph M. Hellerstein,et al.  Distributed GraphLab: A Framework for Machine Learning in the Cloud , 2012, Proc. VLDB Endow..

[8]  Sanjay Kumar Madria,et al.  M-Grid: a distributed framework for multidimensional indexing and querying of location based data , 2017, Distributed and Parallel Databases.

[9]  S. Koonin,et al.  Big data and city living – what can it do for us? , 2012 .

[10]  Aart J. C. Bik,et al.  Pregel: a system for large-scale graph processing , 2010, SIGMOD Conference.

[11]  Lisa Amini,et al.  Challenges and results in city-scale sensing , 2011, 2011 IEEE SENSORS Proceedings.

[12]  Ramachandran Ramjee,et al.  Nericell: rich monitoring of road and traffic conditions using mobile smartphones , 2008, SenSys '08.

[13]  Ameet Talwalkar,et al.  MLlib: Machine Learning in Apache Spark , 2015, J. Mach. Learn. Res..

[14]  Anirban Mondal,et al.  Efficient and Scalable Spatial Retrieval of Resident Involvement Information in City Events , 2015, 2015 16th IEEE International Conference on Mobile Data Management.

[15]  Swaminathan Sivasubramanian,et al.  Amazon dynamoDB: a seamlessly scalable non-relational database service , 2012, SIGMOD Conference.

[16]  Jignesh M. Patel,et al.  Storm@twitter , 2014, SIGMOD Conference.

[17]  Arkady B. Zaslavsky,et al.  Sensing as a service model for smart cities supported by Internet of Things , 2013, Trans. Emerg. Telecommun. Technol..

[18]  Felix Naumann,et al.  The Stratosphere platform for big data analytics , 2014, The VLDB Journal.

[19]  Sean Owen,et al.  Mahout in Action , 2011 .

[20]  Anirban Mondal,et al.  Dynamic Content and Route Management in Wireless Networks , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[21]  Shirish Tatikonda,et al.  SystemML: Declarative machine learning on MapReduce , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[22]  Pete Wyckoff,et al.  Hive - A Warehousing Solution Over a Map-Reduce Framework , 2009, Proc. VLDB Endow..

[23]  Reynold Xin,et al.  GraphX: Graph Processing in a Distributed Dataflow Framework , 2014, OSDI.

[24]  Anirban Mondal,et al.  Crowdsourcing: Dynamic Data Management in Mobile P2P Networks , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.

[25]  Anirban Mondal,et al.  CityZen: A Cost-Effective City Management System with Incentive-Driven Resident Engagement , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.