DeepDensity: Convolutional neural network based estimation of local fringe pattern density

[1]  Hongwei Guo,et al.  Fringe phase extraction using windowed Fourier transform guided by principal component analysis. , 2013, Applied optics.

[2]  M. Servin,et al.  Fringe-follower regularized phase tracker for demodulation of closed-fringe interferograms , 2001 .

[3]  Chao Zuo,et al.  Dynamic 3-D measurement based on fringe-to-fringe transformation using deep learning. , 2019, Optics Express.

[4]  Jingang Zhong,et al.  Multiscale windowed Fourier transform for phase extraction of fringe patterns. , 2007, Applied optics.

[5]  Qian Kemao,et al.  A generalized regularized phase tracker for demodulation of a single fringe pattern. , 2012, Optics express.

[6]  Y. Surrel Phase stepping: a new self-calibrating algorithm. , 1993, Applied optics.

[7]  J Vargas,et al.  Phase-shifting interferometry based on principal component analysis. , 2011, Optics letters.

[8]  Qifeng Yu,et al.  An algorithm for estimating both fringe orientation and fringe density , 2007 .

[9]  Bongtae Han,et al.  Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms. , 2004, Optics letters.

[10]  Krzysztof Patorski,et al.  Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. , 2012, Optics express.

[11]  Maciej Trusiak,et al.  Hilbert-Huang processing for single-exposure two-dimensional grating interferometry. , 2013, Optics express.

[12]  Qian Kemao,et al.  Sequential demodulation of a single fringe pattern guided by local frequencies. , 2007, Optics letters.

[13]  Maciej Trusiak,et al.  Analysis of fringe patterns with variable density using modified variational image decomposition aided by the Hilbert Transform , 2018, Polish-Slovak-Czech Optical Conference on Wave and Quantum Aspects of Contemporary Optics.

[14]  Myung K. Kim Principles and techniques of digital holographic microscopy , 2010 .

[15]  Qi Yang,et al.  Local frequency estimation for the fringe pattern with a spatial carrier: principle and applications. , 2007, Applied optics.

[16]  Krzysztof Patorski,et al.  Handbook of the moiré fringe technique , 1993 .

[17]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[18]  Hieu Nguyen,et al.  Real-time 3D shape measurement using 3LCD projection and deep machine learning. , 2019, Applied optics.

[19]  John E. Greivenkamp,et al.  Generalized Data Reduction For Heterodyne Interferometry , 1984 .

[20]  Jian Yang,et al.  Phase unwrapping based on a residual en-decoder network for phase images in Fourier domain Doppler optical coherence tomography. , 2020, Biomedical optics express.

[21]  Jean-Claude Tinguely,et al.  Structured illumination microscopy using a photonic chip , 2019, Nature Photonics.

[22]  Rigoberto Juarez-Salazar,et al.  How do phase-shifting algorithms work? , 2018, European Journal of Physics.

[23]  Kunihiko Fukushima,et al.  Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position , 1980, Biological Cybernetics.

[24]  Bing Pan,et al.  Frequency-guided windowed Fourier ridges technique for automatic demodulation of a single closed fringe pattern. , 2010, Applied optics.

[25]  Feng Pan,et al.  Adaptive frequency filtering based on convolutional neural networks in off-axis digital holographic microscopy. , 2019, Biomedical optics express.

[26]  P. Carré Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures , 1966 .

[27]  K. Patorski,et al.  Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations. , 2011, Applied optics.

[28]  R. Smythe,et al.  Instantaneous Phase Measuring Interferometry , 1984 .

[29]  Liang Zhang,et al.  Fringe pattern analysis using deep learning , 2018, Advanced Photonics.

[30]  Shaowei Jiang,et al.  Rapid and robust two-dimensional phase unwrapping via deep learning. , 2019, Optics express.

[31]  Michael B. North-Morris,et al.  Pixelated Phase-Mask Dynamic Interferometers , 2004 .

[32]  O Marklund Robust fringe density and direction estimation in noisy phase maps. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[33]  Qian Kemao,et al.  Frequency guided methods for demodulation of a single fringe pattern. , 2009, Optics express.

[34]  Feipeng Da,et al.  Phase demodulation using adaptive windowed Fourier transform based on Hilbert-Huang transform. , 2012, Optics express.

[35]  Tao Sun,et al.  Fringe pattern filtering using convolutional neural network , 2019, International Conference on Optical and Photonic Engineering.

[36]  Osamu Matoba,et al.  Digital four-step phase-shifting technique from a single fringe pattern using Riesz transform. , 2019, Optics letters.

[37]  Jianlin Zhao,et al.  One-step robust deep learning phase unwrapping. , 2019, Optics express.

[38]  Qian Kemao,et al.  Windowed Fourier transform for fringe pattern analysis. , 2004, Applied optics.

[39]  D. J. Brangaccio,et al.  Digital wavefront measuring interferometer for testing optical surfaces and lenses. , 1974, Applied optics.

[40]  Chao Zuo,et al.  Variational Hilbert Quantitative Phase Imaging , 2020, Scientific Reports.

[41]  J C Estrada,et al.  Local adaptable quadrature filters to demodulate single fringe patterns with closed fringes. , 2007, Optics express.

[42]  B. Kemper,et al.  Digital holographic microscopy for live cell applications and technical inspection. , 2008, Applied optics.

[43]  Yassine Tounsi,et al.  Estimation of phase derivative from a single fringe pattern using Riesz transforms , 2017 .

[44]  Sunggoo Cho A Neural Network for Denoising Fringe Patterns with Nonuniformly Illuminating Background Noise , 2019, Journal of the Korean Physical Society.

[45]  Caiming Zhang,et al.  Optical Fringe Patterns Filtering Based on Multi-Stage Convolution Neural Network , 2019, Optics and Lasers in Engineering.

[46]  Adam Styk,et al.  Automatic fringe pattern enhancement using truly adaptive period-guided bidimensional empirical mode decomposition. , 2020, Optics express.

[47]  Cho Jui Tay,et al.  Fringe-density estimation by continuous wavelet transform. , 2005, Applied optics.

[48]  Chuong V. Nguyen,et al.  Automated Fourier space region-recognition filtering for off-axis digital holographic microscopy. , 2016, Biomedical optics express.

[49]  Myung K. Kim Digital Holographic Microscopy: Principles, Techniques, and Applications , 2011 .

[50]  Anand Asundi,et al.  Fringe pattern denoising based on deep learning , 2019, Optics Communications.

[51]  T. Eiju,et al.  Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm. , 1987, Applied optics.

[52]  D. Malacara,et al.  Interferogram Analysis for Optical Testing , 2018 .

[53]  J. Kostencka,et al.  Accurate shape measurement of focusing microstructures in Fourier digital holographic microscopy. , 2018, Applied optics.

[54]  Dennis C. Ghiglia,et al.  Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software , 1998 .

[55]  J Vargas,et al.  Local fringe density determination by adaptive filtering. , 2011, Optics letters.

[56]  G. T. Reid,et al.  Interferogram Analysis: Digital Fringe Pattern Measurement Techniques , 1994 .

[57]  J. Schwider,et al.  IV Advanced Evaluation Techniques in Interferometry , 1990 .

[58]  Natan T. Shaked,et al.  PhUn-Net: ready-to-use neural network for unwrapping quantitative phase images of biological cells. , 2020, Biomedical optics express.

[59]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[60]  Jiawen Weng,et al.  Direct and accurate phase unwrapping with deep neural network. , 2020, Applied optics.

[61]  Pasquale Memmolo,et al.  Adaptive and automatic diffraction order filtering by singular value decomposition in off-axis digital holographic microscopy. , 2019, Applied optics.

[62]  Zeev Zalevsky,et al.  Spatially-multiplexed interferometric microscopy (SMIM): converting a standard microscope into a holographic one. , 2014, Optics express.

[63]  Yonggang Su,et al.  Variational image decomposition for estimation of fringe orientation and density from electronic speckle pattern interferometry fringe patterns with greatly variable density , 2016 .

[64]  T. Huser,et al.  Chip-based wide field-of-view nanoscopy , 2017, Nature Photonics.

[65]  Woei Ming Lee,et al.  Holo-UNet: hologram-to-hologram neural network restoration for high fidelity low light quantitative phase imaging of live cells. , 2020, Biomedical optics express.

[66]  Qian Kemao,et al.  Fast frequency-guided sequential demodulation of a single fringe pattern. , 2010, Optics letters.

[67]  Sam Van der Jeught,et al.  Deep neural networks for single shot structured light profilometry. , 2019, Optics express.

[68]  M. Takeda,et al.  Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry , 1982 .

[69]  Qinghua Guo,et al.  Label enhanced and patch based deep learning for phase retrieval from single frame fringe pattern in fringe projection 3D measurement. , 2019, Optics express.

[70]  Maciej Trusiak,et al.  Automatized fringe pattern preprocessing using unsupervised variational image decomposition. , 2019, Optics express.

[71]  Shijie Feng,et al.  Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry. , 2020, Optics letters.

[72]  Maciej Trusiak,et al.  Single-frame fringe pattern analysis using modified variational image decomposition aided by the Hilbert transform for fast full-field quantitative phase imaging , 2018, Photonics Europe.

[73]  Sai Siva Gorthi,et al.  Fringe projection techniques: Whither we are? , 2010 .

[74]  Rama Krishna Sai Subrahmanyam Gorthi,et al.  PhaseNet: A Deep Convolutional Neural Network for Two-Dimensional Phase Unwrapping , 2019, IEEE Signal Processing Letters.

[75]  D. Malacara Optical Shop Testing , 1978 .

[76]  Junchao Zhang,et al.  Phase unwrapping in optical metrology via denoised and convolutional segmentation networks. , 2019, Optics express.