Optimal Process Paths for Endoreversible Systems

Abstract All energy transformation processes occurring in reality are irreversible and in many cases these irreversibilities must be included in a realistic description of such processes. Endoreversible thermodynamics is a non-equilibrium approach in this direction by viewing a system as a network of internally reversible (endoreversible) subsystems exchanging energy in an irreversible fashion. All irreversibilities are confined to the interaction between the subsystems. This review is dedicated to the dynamical investigation of such endoreversible systems. First the general framework for the endoreversible description of a system is briefly introduced, and then the necessary mathematical tools to determine optimal process paths for such systems are presented. These are complemented by simple examples for the application of the different methods. Then the optimal paths for endoreversible processes of increasing complexity are discussed: first the processes between given equilibrium states, and then cyclic processes. These are followed by a review of internal combustion engines and by a number of further selected applications. We conclude with an outlook to other areas of irreversible thermodynamics where path optimization methods have been successfully used.

[1]  Peter Salamon,et al.  A Simple Example of Control to Minimize Entropy Production , 2002 .

[2]  A. Bejan Theory of heat transfer-irreversible power plants , 1988 .

[3]  Alexis De Vos,et al.  Endoreversible thermodynamics and chemical reactions , 1991 .

[4]  Bjarne Andresen,et al.  Thermodynamics in finite time: A chemically driven engine , 1980 .

[5]  Karl Heinz Hoffmann,et al.  Optimal Piston Paths for Diesel Engines , 2000 .

[6]  Peter Salamon,et al.  Finite time thermodynamics: Optimal expansion of a heated working fluid , 1982 .

[7]  Yehuda B. Band,et al.  Optimization of a model internal combustion engine , 1982 .

[8]  Karl Heinz Hoffmann,et al.  What Conditions Make Minimum Entropy Production Equivalent to Maximum Power Production? , 2001 .

[9]  Peter Salamon,et al.  Maximum power from a cycling working fluid , 1982 .

[10]  I. I. Novikov The efficiency of atomic power stations (a review) , 1958 .

[11]  R. Berry,et al.  Optimization of a heat engine based on a dissipative system , 1983 .

[12]  Karl Heinz Hoffmann,et al.  Scaling behaviour of optimal simulated annealing schedules , 1993 .

[13]  I. L. Leites,et al.  Membrane technology of mixed-gas separation: thermodynamic analysis for feasibility study , 1991 .

[14]  G. Swift,et al.  Experiments with an Intrinsically Irreversible Acoustic Heat Engine , 1983 .

[15]  Karl Heinz Hoffmann,et al.  Optimal simulated annealing schedules for self similar systems , 1995 .

[16]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[17]  Bjarne Andresen,et al.  Availability for finite-time processes. General theory and a model , 1983 .

[18]  Karl-Heinz Hoffmann,et al.  Optimizing Simulated Annealing , 1990, PPSN.

[19]  Berry,et al.  Estimation of productivity, efficiency, and entropy production for cyclic separation processes with a distributed working fluid. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .

[21]  T. Long,et al.  RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE. , 1903 .

[22]  P. Salamon,et al.  Principles of control thermodynamics , 2001 .

[23]  Orlov,et al.  Analytical and numerical estimates of efficiency for an irreversible heat engine with distributed working fluid. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[24]  Yehuda B. Band,et al.  Power considerations in the operation of a piston fitted inside a cylinder containing a dynamically heated working fluid , 1981 .

[25]  Peter Salamon,et al.  The geometry of separation processes: A horse-carrot theorem for steady flow systems , 1998 .

[26]  P. Salamon,et al.  Best possible strategy for finding ground states. , 2001, Physical review letters.

[27]  B. Andresen,et al.  Thermodynamics in finite time: extremals for imperfect heat engines , 1977 .

[28]  Peter Salamon,et al.  Optimality in Multi-stage Operations with Asymptotically Vanishing Cost , 2002 .

[29]  Peter Salamon,et al.  Maximum work production from a heated gas in a cylinder with piston , 1980 .

[30]  Karl Heinz Hoffmann,et al.  Comparison of entropy production rate minimization methods for binary diabatic distillation , 2002 .

[31]  Kazakov Va,et al.  Estimation of productivity, efficiency, and entropy production for cyclic separation processes with a distributed working fluid. , 1994 .

[32]  Karl Heinz Hoffmann,et al.  Intrinsically irreversible light-driven engine , 1985 .

[33]  Jeffrey M. Gordon,et al.  Performance characteristics of endoreversible chemical engines , 1993 .

[34]  J. Ross,et al.  Oscillations, multiple steady states, and instabilities in illuminated systems , 1973 .

[35]  Fengrui Sun,et al.  Optimal expansion of a heated working fluid with phenomenological heat transfer , 1998 .

[36]  Bjarne Andresen,et al.  Thermodynamics in finite time , 1984 .

[37]  Karl Heinz Hoffmann,et al.  Numerically Optimized Performance of Diabatic Distillation Columns May 26 , 2001 , 2001 .

[38]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[39]  Adrian Bejan,et al.  Optimum flowrate history for cooldown and energy storage processes , 1982 .

[40]  Adrian Bejan Extraction of exergy from solar collectors under time-varying conditions , 1982 .

[41]  Karl Heinz Hoffmann,et al.  The optimal simulated annealing schedule for a simple model , 1990 .

[42]  J. Gordon,et al.  General performance characteristics of real heat engines , 1992 .

[43]  Peter Salamon,et al.  Facts, Conjectures, and Improvements for Simulated Annealing , 1987 .

[44]  Jeffrey M. Gordon,et al.  On optimizing maximum‐power heat engines , 1991 .

[45]  Ronnie Kosloff,et al.  On the classical limit of quantum thermodynamics in finite time , 1992 .

[46]  S. Sieniutycz,et al.  Thermodynamic Optimization of Finite-Time Processes , 2000 .

[47]  W. Ebeling Endoreversible Thermodynamics of Solar Energy Conversion , 1995 .

[48]  Adrian Bejan,et al.  Second-law analysis of solar collectors with energy storage capability , 1985 .

[49]  Eitan Geva,et al.  On the irreversible performance of a quantum heat engine , 2002 .

[50]  Victor Fairén,et al.  On the efficiency of thermal engines with power output: Harmonically driven engines , 1981 .

[51]  Mark Schell,et al.  Stabilization of unstable states and oscillatory phenomena in an illuminated thermochemical system: Theory and experiment , 1984 .

[52]  Bjarne Andresen,et al.  Thermodynamics in finite time: Processes with temperature‐dependent chemical reactions , 1980 .

[53]  W. J. D. Annand,et al.  Heat Transfer in the Cylinders of Reciprocating Internal Combustion Engines , 1963 .

[54]  Karl Heinz Hoffmann,et al.  Structure of best possible strategies for finding ground states. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[56]  C. F. Taylor,et al.  The internal-combustion engine in theory and practice , 1985 .

[57]  B. Andresen,et al.  Thermodynamics in finite time. I. The step-Carnot cycle , 1977 .

[58]  R. Stephen Berry,et al.  Power and efficiency limits for internal combustion engines via methods of finite‐time thermodynamics , 1993 .

[59]  Karl Heinz Hoffmann,et al.  Numerically optimized performance of diabatic distillation columns , 2001 .

[60]  M. Rubin Optimal configuration of a class of irreversible heat engines. II , 1979 .

[61]  Yehuda B. Band,et al.  The generalized Carnot cycle: A working fluid operating in finite time between finite heat sources and sinks , 1983 .

[62]  B. Andresen,et al.  Optimal Behavior of Consecutive Chemical Reactions A⇔B⇔C† , 2002 .

[63]  Karl Heinz Hoffmann,et al.  Optimal paths for a bimolecular, light-driven engine , 1989 .

[64]  M. Rubin Optimal configuration of an irreversible heat engine with fixed compression ratio , 1980 .

[65]  Ronnie Kosloff,et al.  Discrete four-stroke quantum heat engine exploring the origin of friction. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  V. Cerný Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm , 1985 .

[67]  Peter Salamon,et al.  Optimal heating of the working fluid in a cylinder equipped with a moving piston , 1981 .

[68]  Bjarne Andresen,et al.  Quasistatic processes as step equilibrations , 1985 .

[69]  Adrian Bejan,et al.  Thermodynamic optimization of mechanical supports for cryogenic apparatus , 1974 .

[70]  Rakesh Agrawal,et al.  Membrane separation process analysis and design strategies based on thermodynamic efficiency of permeation , 1996 .

[71]  Brown,et al.  Finite-time thermodynamics of a porous plug. , 1986, Physical review. A, General physics.

[72]  Victor Fairén,et al.  On the efficiency of thermal engines with power output: Consideration of inertial effects , 1981 .

[73]  J. Ross,et al.  Light induced bistability in S2O6F2⇄2 SO3F: Theory and experiment , 1984 .

[74]  Helmut Müser Thermodynamische Behandlung von Elektronenprozessen in Halbleiter-Randschichten , 1957 .

[75]  Orlov,et al.  Power output from an irreversible heat engine with a nonuniform working fluid. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[76]  Bjarne Andresen,et al.  Optimal staging of endoreversible heat engines , 1980 .

[77]  Karl Heinz Hoffmann,et al.  Optimal paths for thermodynamic systems: The ideal diesel cycle , 1982 .