Concentration of normalized sums and a central limit theorem for noncorrelated random variables

For noncorrelated random variables, we study a concentration property of the family of distributions of normalized sums formed by sequences of times of a given large length.

[1]  A. A. Borovkov,et al.  On an Inequality and a Related Characterization of the Normal Distribution , 1984 .

[2]  S. Bobkov,et al.  Modified Logarithmic Sobolev Inequalities in Discrete Settings , 2006 .

[3]  P. Hinow,et al.  Moment inequalities and central limit properties of isotropic convex bodies , 2002 .

[4]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[5]  M. Ledoux,et al.  Isoperimetry and Gaussian analysis , 1996 .

[6]  H. Chernoff,et al.  Central Limit Theorems for Interchangeable Processes , 1958, Canadian Journal of Mathematics.

[7]  M. Gromov,et al.  A topological application of the isoperimetric inequality , 1983 .

[8]  Asymptotics of Cross Sections for Convex Bodies , 2000 .

[9]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[10]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[11]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .

[12]  Marjorie G. Hahn,et al.  Empirical central limit theorems for exchangeable random variables , 2002 .

[13]  D. Freedman,et al.  Asymptotics of Graphical Projection Pursuit , 1984 .

[14]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[15]  Dan Romik,et al.  Projecting the surface measure of the sphere of ℓpn , 2003 .

[16]  Sergey G. Bobkov,et al.  Modified log-sobolev inequalities, mixing and hypercontractivity , 2003, STOC '03.

[17]  Sergey G. Bobkov,et al.  On the Central Limit Property of Convex Bodies , 2003 .

[18]  M. Ledoux Concentration of measure and logarithmic Sobolev inequalities , 1999 .

[19]  P. Diaconis Group representations in probability and statistics , 1988 .

[20]  Concentration of Distributions of the Weighted Sums with Bernoullian Coefficients , 2003 .

[21]  Sergey G. Bobkov,et al.  Generalized Symmetric Polynomials and an Approximate De Finetti Representation , 2005 .

[22]  H. Bohman,et al.  Approximate fourier analysis of distribution functions , 1961 .

[23]  Sergey G. Bobkov,et al.  On concentration of distributions of random weighted sums , 2003 .

[24]  Robert H. Bowmar Limit theorems for sums of independent random variables , 1962 .

[25]  Keith Ball,et al.  The central limit problem for convex bodies , 2003 .

[26]  H. Weizsäcker,et al.  Sudakov's typical marginals, random linear functionals and a conditional central limit theorem , 1997 .