Discrete non-local boundary conditions for split-step Padé approximations of the one-way Helmholtz equation

This paper deals with the efficient numerical solution of the two-dimensional one-way Helmholtz equation posed on an unbounded domain. In this case, one has to introduce artificial boundary conditions to confine the computational domain. The main topic of this work is the construction of the so-called discrete transparent boundary conditions for state-of-the-art parabolic equation methods, namely a split-step discretization of the high-order parabolic approximation and the split-step Pade algorithm of Collins. Finally, several numerical examples arising in optics and underwater acoustics illustrate the efficiency and accuracy of our approach.

[1]  Matthias Ehrhardt Discrete Transparent Boundary Conditions for Wide Angle Parabolic Equations for non-vanishing starting fields , 2005 .

[2]  Oleg A. Godin,et al.  Reciprocity and energy conservation within the parabolic approximation , 1999 .

[3]  L. Trefethen,et al.  Wide-angle one-way wave equations. , 1988, The Journal of the Acoustical Society of America.

[4]  Björn Engquist,et al.  Higher order paraxial wave equation approximations in heterogenous media , 1988 .

[5]  G. Doetsch Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation , 1981 .

[6]  Non-local boundary conditions for high-order parabolic equation algorithms , 2000 .

[7]  Ding Lee,et al.  A higher-order parabolic wave equation , 1987 .

[8]  Matthias Ehrhardt,et al.  Fast calculation of energy and mass preserving solutions of Schrödinger-Poisson systems on unbounded domains , 2006 .

[9]  Andrea Zisowsky,et al.  Discrete Transparent Boundary Conditions for Systems of Evolution Equations , 2004 .

[10]  A. V. Popov,et al.  Implementation of transparent boundaries for numerical solution of the Schrödinger equation , 1991 .

[11]  Ding Lee,et al.  A finite‐difference treatment of interface conditions for the parabolic wave equation: The irregular interface , 1982 .

[12]  Dmitry Yu. Mikhin Exact discrete nonlocal boundary conditions for high-order Padé parabolic equations , 2004 .

[13]  M. D. Collins A split‐step Padé solution for the parabolic equation method , 1993 .

[14]  John S. Papadakis EXACT, NONREFLECTING BOUNDARY CONDITIONS FOR PARABOLIC-TYPE APPROXIMATIONS IN UNDERWATER ACOUSTICS , 1994 .

[15]  Frédéric Poupaud,et al.  The pseudo-differential approach¶to finite differences revisited , 1999 .

[16]  S. M. Kirkup,et al.  Solution of Helmholtz Equation in the Exterior Domain by Elementary Boundary Integral Methods , 1995 .

[17]  Frederick D. Tappert,et al.  Calculation of the effect of internal waves on oceanic sound transmission , 1975 .

[18]  Frank Schmidt,et al.  Discrete transparent boundary conditions for the numerical solution of Fresnel's equation , 1995 .

[19]  Matthias Ehrhardt,et al.  Discrete Transparent Boundary Conditions for Wide Angle Parabolic Equations in Underwater Acoustics , 1998 .

[20]  Gary H. Brooke,et al.  Rational square-root approximations for parabolic equation algorithms , 1997 .

[21]  Frank Schmidt,et al.  Transparent boundary conditions for split-step Padé approximations of the one-way Helmholtz equation , 2001 .

[22]  D. Migliore Mary , 1999 .

[23]  Matthias Ehrhardt,et al.  Solutions to the discrete Airy equation: application to parabolic equation calculations , 2004 .

[24]  G. E. Warnaka A different look at the anechoic wedge , 1982 .

[25]  Charles Vassallo,et al.  Optical Waveguide Concepts , 1991 .

[26]  Jon F. Claerbout,et al.  Coarse grid calculations of waves in inhomogeneous media with application to delineation of complicated seismic structure , 1970 .

[27]  R. H. Hardin Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations , 1973 .

[28]  D. Thomson,et al.  Exact Boundary Conditions for Acoustic PE Modeling Over an N2-Linear Half-Space , 2008 .

[29]  Nikolaos A. Kampanis,et al.  A FINITE ELEMENT METHOD FOR THE PARABOLIC EQUATION IN AEROACOUSTICS COUPLED WITH A NONLOCAL BOUNDARY CONDITION FOR AN INHOMOGENEOUS ATMOSPHERE , 2005 .

[30]  R. Greene The rational approximation to the acoustic wave equation with bottom interaction , 1984 .

[31]  David J. Thomson,et al.  Complex Padé approximants for wide-angle acoustic propagators , 2000 .

[32]  Fred D. Tappert,et al.  The parabolic approximation method , 1977 .

[33]  Sherman W. Marcus A generalized impedance method for application of the parabolic approximation to underwater acoustics , 1991 .

[34]  J. Keller,et al.  Exact non-reflecting boundary conditions , 1989 .

[35]  William B. Gragg,et al.  The Laurent-Pade Table , 1974, IFIP Congress.

[36]  Louis Fishman,et al.  Uniform high-frequency approximations of the square root Helmholtz operator symbol , 1997 .

[38]  On the reference wave vector of paraxial Helmholtz equations , 1996 .

[39]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[40]  Ya Yan Lu,et al.  The Riccati method for the Helmholtz equation , 1996 .

[41]  Matthias Ehrhardt,et al.  Discrete transparent boundary conditions for the Schrödinger equation , 2001 .

[42]  F. Schmidt,et al.  Transparent boundary conditions for a wide-angle approximation of the one-way Helmholtz equation , 2000 .

[43]  W. Kuperman,et al.  Computational Ocean Acoustics , 1994 .

[44]  Ya Yan Lu,et al.  Exact One-way Methods for Acoustic Waveguides , 1999 .

[45]  Perfectly matched layer for acoustic waveguide modeling --- benchmark calculations and perturbation analysis , 2007 .

[46]  Anton Arnold,et al.  Numerically Absorbing Boundary Conditions for Quantum Evolution Equations , 1998, VLSI Design.

[47]  M. Feit,et al.  Light propagation in graded-index optical fibers. , 1978, Applied optics.

[48]  Frensley,et al.  Non-Markovian open-system boundary conditions for the time-dependent Schrödinger equation. , 1994, Physical review. B, Condensed matter.

[49]  L. Trefethen,et al.  Well-Posedness of one-way wave equations and absorbing boundary conditions , 1986 .

[50]  H K Brock The AESD Parabolic Equation Model. , 1978 .

[51]  Ya Yan Lu,et al.  VALIDITY OF ONE-WAY MODELS IN THE WEAK RANGE DEPENDENCE LIMIT , 2004 .

[52]  Leszek Demkowicz,et al.  Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements , 1996 .

[53]  S. T. McDaniel,et al.  Ocean Acoustic Propagation by Finite Difference Methods , 1988 .