Adaptive Configuration of evolutionary algorithms for constrained optimization

In the literature, many different evolutionary algorithms (EAs) with different search operators have been reported for solving optimization problems. However, no single algorithm is consistently able to solve all types of problems. To overcome this problem, the recent trend is to use a mix of operators within a single algorithm. There are also cases where multiple methodologies, each with a single search operator, have been used under one approach. These approaches outperformed the single operator based single algorithm approaches. In this paper, we propose a new algorithm framework that uses multiple methodologies, where each methodology uses multiple search operators. We introduce it as the EA with Adaptive Configuration, where the first level is to decide the methodologies and the second level is to decide the search operators. In this approach, all operators and population sizes are updated adaptively. Although the framework may sound complex, one can gain significant benefits from it in solving optimization problems. The proposed framework has been tested by solving two sets of specialized benchmark problems. The results showed a competitive, if not better, performance when it was compared to the state-of-the-art algorithms. Moreover, the proposed algorithm significantly reduces the computational time in comparison to both single and multi-operator based algorithms.

[1]  Ponnuthurai N. Suganthan,et al.  Ensemble differential evolution algorithm for CEC2011 problems , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[2]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[3]  Thomas Philip Runarsson,et al.  Approximate Evolution Strategy using Stochastic Ranking , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[4]  Carlos A. Coello Coello,et al.  An empirical study about the usefulness of evolution strategies to solve constrained optimization problems , 2008, Int. J. Gen. Syst..

[5]  Ponnuthurai N. Suganthan,et al.  Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems , 2010, IEEE Congress on Evolutionary Computation.

[6]  Ioannis G. Tsoulos,et al.  Solving constrained optimization problems using a novel genetic algorithm , 2009, Appl. Math. Comput..

[7]  Carlos García-Martínez,et al.  Global and local real-coded genetic algorithms based on parent-centric crossover operators , 2008, Eur. J. Oper. Res..

[8]  Mehmet Fatih Tasgetiren,et al.  A Multi-Populated Differential Evolution Algorithm for Solving Constrained Optimization Problem , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[9]  A.E. Eiben,et al.  Competing crossovers in an adaptive GA framework , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[10]  Li Jing,et al.  Urban Cliamtology, Energy Conservation and Thermal Performance of Lhasa City , 2009, 2009 International Conference on Energy and Environment Technology.

[11]  Carlos A. Coello Coello,et al.  Constraint-handling in nature-inspired numerical optimization: Past, present and future , 2011, Swarm Evol. Comput..

[12]  Janez Brest,et al.  An improved self-adaptive differential evolution algorithm in single objective constrained real-parameter optimization , 2010, IEEE Congress on Evolutionary Computation.

[13]  Zbigniew Skolicki,et al.  An analysis of island models in evolutionary computation , 2005, GECCO '05.

[14]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[16]  Jouni Lampinen,et al.  Constrained Real-Parameter Optimization with Generalized Differential Evolution , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Zbigniew Michalewicz,et al.  Genetic Algorithms Plus Data Structures Equals Evolution Programs , 1994 .

[18]  Ruhul A. Sarker,et al.  Analyzing the Simple Ranking and Selection Process for Constrained Evolutionary Optimization , 2008, Journal of Computer Science and Technology.

[19]  Hyun Myung,et al.  Evolutionary programming techniques for constrained optimization problems , 1997, IEEE Trans. Evol. Comput..

[20]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[21]  A. S. Xanthopoulos,et al.  Reinforcement learning and evolutionary algorithms for non-stationary multi-armed bandit problems , 2008, Appl. Math. Comput..

[22]  Ata Allah Taleizadeh,et al.  A hybrid method of fuzzy simulation and genetic algorithm to optimize constrained inventory control systems with stochastic replenishments and fuzzy demand , 2013, Inf. Sci..

[23]  Sam Kwong,et al.  Gbest-guided artificial bee colony algorithm for numerical function optimization , 2010, Appl. Math. Comput..

[24]  Ruhul A. Sarker,et al.  Self-adaptive differential evolution incorporating a heuristic mixing of operators , 2013, Comput. Optim. Appl..

[25]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  Ke Chen,et al.  Applied Mathematics and Computation , 2022 .

[27]  Hsin-Chuan Kuo,et al.  A Directed Genetic Algorithm for global optimization , 2013, Appl. Math. Comput..

[28]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[29]  Xinghuo Yu,et al.  An Adaptive Penalty Function Method for Constrained Optimization with Evolutionary Programming , 2000, J. Adv. Comput. Intell. Intell. Informatics.

[30]  Carlos A. Coello Coello,et al.  Modified Differential Evolution for Constrained Optimization , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[31]  Carlos A. Coello Coello,et al.  Constrained Optimization Using an Evolutionary Programming-based Cultural Algorithm , 2002 .

[32]  Tetsuyuki Takahama,et al.  Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation , 2010, IEEE Congress on Evolutionary Computation.

[33]  Efrn Mezura-Montes,et al.  Constraint-Handling in Evolutionary Optimization , 2009 .

[34]  Xin Yao,et al.  Evolutionary programming using mutations based on the Levy probability distribution , 2004, IEEE Transactions on Evolutionary Computation.

[35]  William M. Spears,et al.  Adapting Crossover in Evolutionary Algorithms , 1995, Evolutionary Programming.

[36]  Ruhul A. Sarker,et al.  An Improved Self-Adaptive Differential Evolution Algorithm for Optimization Problems , 2013, IEEE Transactions on Industrial Informatics.

[37]  Kusum Deep,et al.  A real coded genetic algorithm for solving integer and mixed integer optimization problems , 2009, Appl. Math. Comput..

[38]  Hui-Ming Wee,et al.  Meta-heuristic algorithms for solving a fuzzy single-period problem , 2011, Math. Comput. Model..

[39]  Ponnuthurai N. Suganthan,et al.  Ensemble strategies with adaptive evolutionary programming , 2010, Inf. Sci..

[40]  Tapabrata Ray,et al.  Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems , 2010, IEEE Congress on Evolutionary Computation.

[41]  Jasper A Vrugt,et al.  Improved evolutionary optimization from genetically adaptive multimethod search , 2007, Proceedings of the National Academy of Sciences.

[42]  Licheng Jiao,et al.  Stochastic ranking based differential evolution algorithm for constrained optimization problem , 2009, GEC '09.

[43]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[44]  Ruhul A. Sarker,et al.  Multi-operator based evolutionary algorithms for solving constrained optimization problems , 2011, Comput. Oper. Res..

[45]  Ruhul A. Sarker,et al.  Search space reduction technique for constrained optimization with tiny feasible space , 2008, GECCO '08.

[46]  Ponnuthurai N. Suganthan,et al.  Diversity enhanced Adaptive Evolutionary Programming for solving single objective constrained problems , 2009, 2009 IEEE Congress on Evolutionary Computation.

[47]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[48]  P. N. Suganthan,et al.  Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Testing Evolutionary Algorithms on Real World Optimization Problems , 2011 .

[49]  Jani Rönkkönen ContinuousMultimodal Global Optimization with Differential Evolution-Based Methods , 2009 .

[50]  John W. Pepper,et al.  Efficient Use of Variation in Evolutionary Optimization , 2010, Appl. Comput. Intell. Soft Comput..

[51]  Ata Allah Taleizadeh,et al.  Multiple-buyer multiple-vendor multi-product multi-constraint supply chain problem with stochastic demand and variable lead-time: A harmony search algorithm , 2011, Appl. Math. Comput..

[52]  Mehmet Fatih Tasgetiren,et al.  An ensemble of discrete differential evolution algorithms for solving the generalized traveling salesman problem , 2010, Appl. Math. Comput..

[53]  Bruce A. Robinson,et al.  Self-Adaptive Multimethod Search for Global Optimization in Real-Parameter Spaces , 2009, IEEE Transactions on Evolutionary Computation.

[54]  Kalyanmoy Deb,et al.  A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization , 2002, Evolutionary Computation.

[55]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[56]  Jing J. Liang,et al.  Problem Deflnitions and Evaluation Criteria for the CEC 2006 Special Session on Constrained Real-Parameter Optimization , 2006 .

[57]  Carlos A. Coello Coello,et al.  A Simple Evolution Strategy to Solve Constrained Optimization Problems , 2003, GECCO.

[58]  P. N. Suganthan,et al.  Ensemble of Constraint Handling Techniques , 2010, IEEE Transactions on Evolutionary Computation.

[59]  Chuan-Kang Ting,et al.  Varying Number of Difference Vectors in Differential Evolution , 2009, 2009 IEEE Congress on Evolutionary Computation.

[60]  Byung Ro Moon,et al.  An empirical study on the synergy of multiple crossover operators , 2002, IEEE Trans. Evol. Comput..

[61]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[62]  Ahmad Makui,et al.  Multiproduct multiple-buyer single-vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint , 2012, Expert Syst. Appl..

[63]  Gary G. Yen,et al.  An Adaptive Penalty Formulation for Constrained Evolutionary Optimization , 2009, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[64]  Qingfu Zhang,et al.  Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters , 2011, IEEE Transactions on Evolutionary Computation.

[65]  Yong Wang,et al.  Combining Multiobjective Optimization With Differential Evolution to Solve Constrained Optimization Problems , 2012, IEEE Transactions on Evolutionary Computation.

[66]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[67]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[68]  Gang Xu,et al.  An adaptive parameter tuning of particle swarm optimization algorithm , 2013, Appl. Math. Comput..

[69]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[70]  Ruhul A. Sarker,et al.  A Comparative Study of Different Variants of Genetic Algorithms for Constrained Optimization , 2010, SEAL.

[71]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[72]  T. Mexia,et al.  Author ' s personal copy , 2009 .

[73]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[74]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[75]  Gregory W. Corder,et al.  Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach , 2009 .

[76]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[77]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[78]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[79]  Xuesong Zhang,et al.  On the use of multi‐algorithm, genetically adaptive multi‐objective method for multi‐site calibration of the SWAT model , 2010 .

[80]  Charles S. Newton,et al.  Evolutionary Optimization (Evopt): A Brief Review And Analysis , 2003, Int. J. Comput. Intell. Appl..

[81]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[82]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[83]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[84]  Ruhul A. Sarker,et al.  On an evolutionary approach for constrained optimization problem solving , 2012, Appl. Soft Comput..

[85]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[86]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[87]  P. Somasundaram,et al.  Application of evolutionary programming to security constrained economic dispatch , 2005 .

[88]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[89]  Zbigniew Skolicki,et al.  Improving Evolutionary Algorithms with Multi-representation Island Models , 2004, PPSN.

[90]  Oliver Kramer,et al.  A Review of Constraint-Handling Techniques for Evolution Strategies , 2010, Appl. Comput. Intell. Soft Comput..

[91]  Pinar Çivicioglu,et al.  Backtracking Search Optimization Algorithm for numerical optimization problems , 2013, Appl. Math. Comput..

[92]  Mehmet Fatih Tasgetiren,et al.  An ensemble of differential evolution algorithms for constrained function optimization , 2010, IEEE Congress on Evolutionary Computation.

[93]  David B. Fogel,et al.  A Comparison of Evolutionary Programming and Genetic Algorithms on Selected Constrained Optimization Problems , 1995, Simul..