Boolean Functions, Projection Operators, and Quantum Error Correcting Codes

This paper describes a fundamental correspondence between Boolean functions and projection operators in Hilbert space. The correspondence is widely applicable, and it is used in this paper to provide a common mathematical framework for the design of both additive and nonadditive quantum error correcting codes. The new framework leads to the construction of a variety of codes including an infinite class of codes that extend the original ((5, 6, 2)) code found by Rains It also extends to operator quantum error correcting codes.

[1]  Lars Eirik Danielsen On Self-Dual Quantum Codes, Graphs, and Boolean Functions , 2005, ArXiv.

[2]  Pradeep Kiran Sarvepalli,et al.  Remarkable Degenerate Quantum Stabilizer Codes Derived from Duadic Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[3]  Eric M. Rains Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.

[4]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[5]  S. Lloyd,et al.  Quantum tensor product structures are observable induced. , 2003, Physical Review Letters.

[6]  Farrokh Vatan,et al.  On the Existence of Nonadditive Quantum Codes , 1998, QCQC.

[7]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[8]  Vikraman Arvind,et al.  Non-stabilizer quantum codes from Abelian subgroups of the error group , 2002, Quantum Inf. Comput..

[9]  R. H. Hardin,et al.  A nonadditive quantum code , 1997, quant-ph/9703002.

[10]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[11]  W. Li,et al.  Foundations of quantum error correction , 2007 .

[12]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[13]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[14]  Seymour Lipschutz Schaum's outline of theory and problems of essential computer mathematics / by Seymour Lipschutz , 1982 .

[15]  A. Robert Calderbank,et al.  Space-time Reed-Muller codes for noncoherent MIMO transmission , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[16]  Seymour Lipschutz Schaum's outline of theory and problems of essential computer mathematics , 1987 .

[17]  A. Ashikhmin,et al.  A Grassmannian Packing Based on the Nordstrom-Robinson Code , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[18]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[19]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[20]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[21]  D. W. Cohen,et al.  An Introduction to Hilbert Space and Quantum Logic , 1989 .

[22]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[23]  Claude Carlet,et al.  Propagation Characteristics of Boolean Functions , 2005, Encyclopedia of Cryptography and Security.

[24]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.

[25]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Markus Grassl,et al.  A Note on Non-Additive Quantum Codes , 1997 .

[27]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.