Classically Time-Controlled Quantum Automata

In this paper we introduce classically time-controlled quantum automata or CTQA, which is a slight but reasonable modification of Moore-Crutchfield quantum finite automata that uses time-dependent evolution operators and a scheduler defining how long each operator will run. Surprisingly enough, time-dependent evolutions provide a significant change in the computational power of quantum automata with respect to a discrete quantum model. Furthermore, CTQA presents itself as a new model of computation that provides a different approach to a formal study of “classical control, quantum data” schemes in quantum computing.

[1]  Alejandro Díaz-Caro,et al.  A Lambda Calculus for Density Matrices with Classical and Probabilistic Controls , 2017, APLAS.

[2]  Marcos Villagra,et al.  Quantum State Complexity of Formal Languages , 2015, DCFS.

[3]  E. Knill,et al.  Conventions for quantum pseudocode , 1996, 2211.02559.

[4]  Abuzer Yakaryilmaz,et al.  Public-qubits versus private-coins , 2012, Electron. Colloquium Comput. Complex..

[5]  Benoît Valiron,et al.  A Lambda Calculus for Quantum Computation with Classical Control , 2005, TLCA.

[6]  Tomoyuki Yamakami One-Way Reversible and Quantum Finite Automata with Advice , 2012, LATA.

[7]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[8]  André Souto,et al.  Quantum machines with classical control , 2017, ArXiv.

[9]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[10]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[11]  Kohtaro Tadaki,et al.  Theory of one-tape linear-time Turing machines , 2010, Theor. Comput. Sci..

[12]  Jennifer Paykin,et al.  QWIRE: a core language for quantum circuits , 2017, POPL.

[13]  Peter Selinger,et al.  Towards a quantum programming language , 2004, Mathematical Structures in Computer Science.

[14]  Harumichi Nishimura,et al.  An application of quantum finite automata to interactive proof systems , 2009, J. Comput. Syst. Sci..

[15]  Benoît Valiron,et al.  Quipper: a scalable quantum programming language , 2013, PLDI.

[16]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[17]  Marcos Villagra,et al.  Quantum and Reversible Verification of Proofs Using Constant Memory Space , 2014, TPNC.

[18]  Shenggen Zheng,et al.  Two-Tape Finite Automata with Quantum and Classical States , 2011, 1104.3634.

[19]  A. C. Cem Say,et al.  Magic coins are useful for small-space quantum machines , 2014, Quantum Inf. Comput..

[20]  A. C. Cem Say,et al.  Quantum Finite Automata: A Modern Introduction , 2014, Computing with New Resources.