Comparative Analyses of Fundamental Differences in Membrane Transport Capabilities in Prokaryotes and Eukaryotes

Whole-genome transporter analyses have been conducted on 141 organisms whose complete genome sequences are available. For each organism, the complete set of membrane transport systems was identified with predicted functions, and classified into protein families based on the transporter classification system. Organisms with larger genome sizes generally possessed a relatively greater number of transport systems. In prokaryotes and unicellular eukaryotes, the significant factor in the increase in transporter content with genome size was a greater diversity of transporter types. In contrast, in multicellular eukaryotes, greater number of paralogs in specific transporter families was the more important factor in the increase in transporter content with genome size. Both eukaryotic and prokaryotic intracellular pathogens and endosymbionts exhibited markedly limited transport capabilities. Hierarchical clustering of phylogenetic profiles of transporter families, derived from the presence or absence of a certain transporter family, showed that clustering patterns of organisms were correlated to both their evolutionary history and their overall physiology and lifestyles.

[1]  Edwin A. Dawes The society for general Microbiology's one-hundredth ordinary meeting , 1984 .

[2]  M. Saier,et al.  A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. , 1993, Trends in biochemical sciences.

[3]  M H Saier,et al.  Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae , 1998, FEBS letters.

[4]  E. Mauceli,et al.  The genome sequence of the filamentous fungus Neurospora crassa , 2003, Nature.

[5]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[6]  C. Kung,et al.  Channels in microbes: so many holes to fill , 2004, Molecular microbiology.

[7]  Ian T. Paulsen,et al.  The Brucella suis genome reveals fundamental similarities between animal and plant pathogens and symbionts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Kazuho Ikeo,et al.  Evolutionary process of amino acid biosynthesis in Corynebacterium at the whole genome level. , 2004, Molecular biology and evolution.

[9]  M. J. Newman,et al.  Purification and reconstitution of functional lactose carrier from Escherichia coli. , 1981, The Journal of biological chemistry.

[10]  M. Saier,et al.  A functional superfamily of sodium/solute symporters. , 1994, Biochimica et biophysica acta.

[11]  E Schneider,et al.  ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. , 1998, FEMS microbiology reviews.

[12]  Ian T. Paulsen,et al.  TransportDB: a relational database of cellular membrane transport systems , 2004, Nucleic Acids Res..

[13]  Christophe Maurel,et al.  The role of aquaporins in root water uptake. , 2002, Annals of botany.

[14]  P. Engel,et al.  Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux. , 1994, European journal of biochemistry.

[15]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[16]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[17]  R Olson,et al.  Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. , 2001, Journal of molecular biology.

[18]  Michael Y. Galperin,et al.  The COG database: new developments in phylogenetic classification of proteins from complete genomes , 2001, Nucleic Acids Res..

[19]  A. Driessen,et al.  The Lactococcal lmrP Gene Encodes a Proton Motive Force- dependent Drug Transporter (*) , 1995, The Journal of Biological Chemistry.

[20]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[21]  R. Shigemoto,et al.  Glutamate and GABA receptor signalling in the developing brain , 2005, Neuroscience.

[22]  S. Stumpe,et al.  TrkH and its homolog, TrkG, determine the specificity and kinetics of cation transport by the Trk system of Escherichia coli , 1995, Journal of bacteriology.

[23]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Jonathan E. Allen,et al.  Genome sequence of the human malaria parasite Plasmodium falciparum , 2002, Nature.

[25]  I. Paulsen,et al.  Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. , 2000, Journal of molecular biology.

[26]  N. Wittekindt,et al.  Glycerol facilitator of Escherichia coli: cloning of glpF and identification of the glpF product , 1990, Journal of bacteriology.

[27]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[28]  So Iwata,et al.  The lactose permease of Escherichia coli: overall structure, the sugar‐binding site and the alternating access model for transport , 2003, FEBS letters.

[29]  M H Saier,et al.  The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. , 2000, Microbiology.

[30]  R. Allikmets,et al.  Complete Characterization of the Human ABC Gene Family , 2001, Journal of bioenergetics and biomembranes.

[31]  G. Thomas,et al.  The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. , 2001, FEMS microbiology reviews.

[32]  M. Saier,et al.  Export of l-Isoleucine from Corynebacterium glutamicum: a Two-Gene-Encoded Member of a New Translocator Family , 2002, Journal of bacteriology.

[33]  F. von Wintzingerode,et al.  Evolutionary trends in the genus Bordetella. , 2001, Microbes and infection.

[34]  A. Goesmann,et al.  The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. , 2003, Journal of biotechnology.

[35]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[36]  E. Kimura,et al.  Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. , 2003, Genome research.

[37]  Lothar Eggeling,et al.  New ubiquitous translocators: amino acid export by Corynebacterium glutamicum and Escherichia coli , 2003, Archives of Microbiology.

[38]  Hong Xue,et al.  Identification of Major Phylogenetic Branches of Inhibitory Ligand-Gated Channel Receptors , 1998, Journal of Molecular Evolution.

[39]  A. Weig,et al.  The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. , 2001, Plant physiology.

[40]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[41]  D. Eisenberg,et al.  Localizing proteins in the cell from their phylogenetic profiles. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Barrell,et al.  The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. , 2003, Nucleic acids research.

[43]  Leon Goldovsky,et al.  Genome coverage, literally speaking. The challenge of annotating 200 genomes with 4 million publications. , 2005, EMBO reports.

[44]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[45]  A. Pajor,et al.  Molecular Properties of Sodium/Dicarboxylate Cotransporters , 2000, The Journal of Membrane Biology.

[46]  A. Driessen,et al.  Functional reconstitution of the purified phosphoenolpyruvate-dependent mannitol-specific transport system of Escherichia coli in phospholipid vesicles: coupling between transport and phosphorylation , 1990, Journal of bacteriology.

[47]  Owen White,et al.  The Comprehensive Microbial Resource , 2001, Nucleic Acids Res..

[48]  M. Saier,et al.  The Transporter Classification (TC) System, 2002 , 2002, Critical reviews in biochemistry and molecular biology.

[49]  Nikos Kyrpides,et al.  Genomes OnLine Database (GOLD): a monitor of genome projects world-wide , 2001, Nucleic Acids Res..

[50]  M. Pellegrini,et al.  Computational methods for protein function analysis. , 2001, Current opinion in chemical biology.

[51]  S F Altschul,et al.  Local alignment statistics. , 1996, Methods in enzymology.

[52]  Eric Gouaux,et al.  Functional characterization of a potassium-selective prokaryotic glutamate receptor , 1999, Nature.

[53]  Hiroshi Kobayashi,et al.  Kup is the major K+ uptake system in Escherichia coli upon hyper‐osmotic stress at a low pH , 1999, FEBS letters.

[54]  M H Saier,et al.  Microbial genome analyses: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. , 1998, Journal of molecular biology.

[55]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  E V Koonin,et al.  Lineage-specific gene expansions in bacterial and archaeal genomes. , 2001, Genome research.

[58]  K. Linton,et al.  The Escherichia coli ATP‐binding cassette (ABC) proteins , 1998, Molecular microbiology.

[59]  Sean R. Eddy,et al.  Pfam: multiple sequence alignments and HMM-profiles of protein domains , 1998, Nucleic Acids Res..

[60]  K. Konstantinidis,et al.  Trends between gene content and genome size in prokaryotic species with larger genomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Christos A. Ouzounis,et al.  Genome coverage, literally speaking , 2005 .

[62]  M H Saier,et al.  A functional‐phylogenetic system for the classification of transport proteins , 1999, Journal of cellular biochemistry.

[63]  R Apweiler,et al.  Clustering and analysis of protein families. , 2001, Current opinion in structural biology.

[64]  S. Nakanishi,et al.  Molecular diversity and functions of glutamate receptors. , 1994, Annual review of biophysics and biomolecular structure.

[65]  P. A. Rea,et al.  The Arabidopsis thaliana ABC Protein Superfamily, a Complete Inventory* , 2001, The Journal of Biological Chemistry.

[66]  Lynn K. Carmichael,et al.  A Genomic View of the Human-Bacteroides thetaiotaomicron Symbiosis , 2003, Science.

[67]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[68]  Klaas Vandepoele,et al.  Exploring the Plant Transcriptome through Phylogenetic Profiling1[w] , 2005, Plant Physiology.

[69]  Dennis Shasha,et al.  Trait-to-Gene A Computational Method for Predicting the Function of Uncharacterized Genes , 2003, Current Biology.

[70]  Fabienne Thomarat,et al.  Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi , 2001, Nature.

[71]  Milton H. Saier,et al.  The IUBMB-endorsed transporter classification system , 2004, Methods in molecular biology.

[72]  M. J. Newman,et al.  Purification, reconstitution, and characterization of the lac permease of Escherichia coli. , 1986, Methods in enzymology.

[73]  Berend Tolner,et al.  Cation‐selectivity of the l‐glutamate transporters of Escherichia coli, Bacillus stearothermophilus and Bacillus caldotenax: dependence on the environment in which the proteins are expressed , 1995, Molecular microbiology.

[74]  Jue Chen,et al.  ATP-binding cassette transporters in bacteria. , 2004, Annual review of biochemistry.

[75]  Milton H. Saier,et al.  A Proposed System for the Classification of Transmembrane Transport Proteins in Living Organisms , 1999 .

[76]  Michael Freitag,et al.  Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism , 2004, Microbiology and Molecular Biology Reviews.

[77]  Thomas Dandekar,et al.  Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts , 2004, Microbiology and Molecular Biology Reviews.

[78]  B. Barrell,et al.  Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica , 2003, Nature Genetics.

[79]  M H Saier,et al.  Phylogenetic characterization of novel transport protein families revealed by genome analyses. , 1999, Biochimica et biophysica acta.

[80]  C. Ouzounis,et al.  Transcription regulation and environmental adaptation in bacteria. , 2003, Trends in microbiology.

[81]  G R Jacobson,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. , 1993, Microbiological reviews.