Device and Circuit Performance Estimation of Junctionless Bulk FinFETs

The design and characteristics of junctionless (JL) bulk FinFET devices and circuits are compared with the conventional inversion-mode (IM) bulk FinFET using 3-D quantum transport device simulation. The JL bulk FinFET shows better short channel characteristics, including drain-induced barrier lowering, subthreshold slope, and threshold voltage (<i>V</i><sub>th</sub>) roll-off characteristics at supply voltage (<i>V</i><sub>DD</sub>) 1 V. Analyses of electron density and electricfield distributions in on-state and off-state also show that the JL devices have better on-off current ratios. Regarding design aspects, the effects of channel doping concentration (<i>N</i><sub>ch</sub>) and Fin height (<i>H</i>)/width (<i>W</i>) on device <i>V</i><sub>th</sub> are also compared. In addition, the <i>V</i><sub>th</sub> of the proposed JL bulk FinFET can be easily tuned by an additional parameter, substrate doping concentration (<i>N</i><sub>sub</sub>). Inverter performance and static random access memory (SRAM) circuit performance are also compared using a coupled device-circuit simulation. The high-to-low delay time (<i>t</i><sub>HL</sub>) and low-to-high delay time (<i>t</i><sub>LH</sub>) of the inverter with JL bulk FinFET are smaller than the inverter with IM bulk FinFET. The JL bulk FinFET SRAM cell also provides a similar static transfer characteristic to those of IM bulk FinFET SRAM cell, which show large potential in digital circuit application.

[1]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[2]  Chenming Hu Device challenges and opportunities , 2004, Digest of Technical Papers. 2004 Symposium on VLSI Technology, 2004..

[3]  Siegfried Selberherr,et al.  Mixed-mode device simulation , 2000 .

[4]  Chun-Yen Chang,et al.  Performance Comparison Between Bulk and SOI Junctionless Transistors , 2013, IEEE Electron Device Letters.

[5]  G. Iafrate,et al.  Quantum correction to the equation of state of an electron gas in a semiconductor. , 1989, Physical review. B, Condensed matter.

[6]  A. Asenov,et al.  Simulation Study of Individual and Combined Sources of Intrinsic Parameter Fluctuations in Conventional Nano-MOSFETs , 2006, IEEE Transactions on Electron Devices.

[7]  C. Hu,et al.  FinFET-a self-aligned double-gate MOSFET scalable to 20 nm , 2000 .

[8]  Horng-Chih Lin,et al.  Characteristics of n-Type Junctionless Poly-Si Thin-Film Transistors With an Ultrathin Channel , 2012, IEEE Electron Device Letters.

[9]  S. Ganguly,et al.  Bulk Planar Junctionless Transistor (BPJLT): An Attractive Device Alternative for Scaling , 2011, IEEE Electron Device Letters.

[10]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[11]  G. Curello,et al.  A 22nm SoC platform technology featuring 3-D tri-gate and high-k/metal gate, optimized for ultra low power, high performance and high density SoC applications , 2012, 2012 International Electron Devices Meeting.

[12]  Horng-Chih Lin,et al.  Gate-All-Around Junctionless Transistors With Heavily Doped Polysilicon Nanowire Channels , 2011, IEEE Electron Device Letters.

[13]  Jianmin Miao,et al.  Gate-All-Around Junctionless Nanowire MOSFET With Improved Low-Frequency Noise Behavior , 2011, IEEE Electron Device Letters.

[14]  Chun-Yen Chang,et al.  Characteristic of p-Type Junctionless Gate-All-Around Nanowire Transistor and Sensitivity Analysis , 2013, IEEE Electron Device Letters.

[15]  M. Armstrong,et al.  Comparison of Junctionless and Conventional Trigate Transistors With $L_{g}$ Down to 26 nm , 2011, IEEE Electron Device Letters.

[16]  A. Kranti,et al.  Device Design and Estimated Performance for p-Type Junctionless Transistors on Bulk Germanium Substrates , 2012, IEEE Transactions on Electron Devices.

[17]  John Robertson,et al.  Impact of incorporated Al on the TiN/HfO2 interface effective work function , 2008 .

[18]  Chenming Hu,et al.  Ultra-thin body SOI MOSFET for deep-sub-tenth micron era , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[19]  G. D. Wilka,et al.  APPLIED PHYSICS REVIEW High- k gate dielectrics: Current status and materials properties considerations , 2001 .

[20]  Chi-Woo Lee,et al.  Reduced electric field in junctionless transistors , 2010 .

[21]  T. Skotnicki,et al.  The end of CMOS scaling: toward the introduction of new materials and structural changes to improve MOSFET performance , 2005, IEEE Circuits and Devices Magazine.

[22]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[23]  Yiming Li,et al.  Process-Variation Effect, Metal-Gate Work-Function Fluctuation, and Random-Dopant Fluctuation in Emerging CMOS Technologies , 2010, IEEE Transactions on Electron Devices.

[24]  3D device simulation of work function and interface trap fluctuations on high-κ / metal gate devices , 2010, 2010 International Electron Devices Meeting.

[25]  J. Liaw,et al.  A 25-nm gate-length FinFET transistor module for 32nm node , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[26]  K. Banerjee,et al.  Modeling and analysis of grain-orientation effects in emerging metal-gate devices and implications for SRAM reliability , 2008, 2008 IEEE International Electron Devices Meeting.

[27]  Yiming Li,et al.  Statistical Simulation of Static Noise Margin Variability in Static Random Access Memory , 2010, IEEE Transactions on Semiconductor Manufacturing.

[28]  A. Kranti,et al.  Junctionless nanowire transistor (JNT): Properties and design guidelines , 2010, 2010 Proceedings of the European Solid State Device Research Conference.

[29]  Jean-Pierre Colinge,et al.  Improvement of carrier ballisticity in junctionless nanowire transistors , 2011 .

[30]  Chi-Woo Lee,et al.  Junctionless multigate field-effect transistor , 2009 .

[31]  J. Meindl,et al.  The impact of intrinsic device fluctuations on CMOS SRAM cell stability , 2001, IEEE J. Solid State Circuits.

[32]  Yu Cao,et al.  Exploring sub-20nm FinFET design with Predictive Technology Models , 2012, DAC Design Automation Conference 2012.

[33]  J. H. Chen,et al.  High performance 22/20nm FinFET CMOS devices with advanced high-K/metal gate scheme , 2010, 2010 International Electron Devices Meeting.

[34]  Wolfgang Fichtner,et al.  Electron and hole mobility in silicon at large operating temperatures. I. Bulk mobility , 2002 .

[35]  Jean-Pierre Colinge,et al.  Mobility and screening effect in heavily doped accumulation-mode metal-oxide-semiconductor field-effect transistors , 2012 .

[36]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.