Protein transport in Archaea: Sec and twin arginine translocation pathways.

The transport of proteins into and across hydrophobic membranes is an essential cellular process. The majority of proteins that are translocated in an unfolded conformation traverse the membrane by way of the universally conserved Sec pathway, whereas the twin arginine translocation pathway is responsible for the transport of folded proteins across the membrane. Structural, biochemical and genetic analyses of these processes in Archaea have revealed unique archaeal features, and have also provided a better understanding of these pathways in organisms of all domains. Further study of these pathways in Archaea might elucidate fundamental principles involved in each type of transport and could help determine their relative costs and benefits as well as evolutionary adaptations in protein secretion strategies.

[1]  G. Montoya,et al.  Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[2]  L. Mellaert,et al.  Structural organization of the twin‐arginine translocation system in Streptomyces lividans , 2005, FEBS letters.

[3]  G. Waksman,et al.  Structural biology of bacterial pathogenesis. , 2004, Current Opinion in Structural Biology.

[4]  R. Rose,et al.  The Haloferax volcanii FtsY Homolog Is Critical for Haloarchaeal Growth but Does Not Require the A Domain , 2005, Journal of bacteriology.

[5]  Kieran Dilks,et al.  Genetic and Biochemical Analysis of the Twin-Arginine Translocation Pathway in Halophilic Archaea , 2005, Journal of bacteriology.

[6]  M. Gerstein,et al.  Use of Thioredoxin as a Reporter To Identify a Subset of Escherichia coli Signal Sequences That Promote Signal Recognition Particle-Dependent Translocation , 2005, Journal of bacteriology.

[7]  Jessica C Kissinger,et al.  Adaptation of protein secretion to extremely high‐salt conditions by extensive use of the twin‐arginine translocation pathway , 2002, Molecular microbiology.

[8]  G. Vonheijne The signal peptide. , 1990 .

[9]  M. Sumper Halobacterial glycoprotein biosynthesis. , 1987, Biochimica et biophysica acta.

[10]  A. Kostyukova,et al.  The archaeal flagellum: a unique motility structure , 1996, Journal of bacteriology.

[11]  M. Wolfgang,et al.  Type IV pilus retraction in pathogenic Neisseria is regulated by the PilC proteins , 2004, The EMBO journal.

[12]  R. Ortenberg,et al.  Evidence for Post-translational Membrane Insertion of the Integral Membrane Protein Bacterioopsin Expressed in the Heterologous Halophilic Archaeon Haloferax volcanii * , 2000, The Journal of Biological Chemistry.

[13]  R. Rose,et al.  In Vivo Analysis of an Essential Archaeal Signal Recognition Particle in Its Native Host , 2002, Journal of bacteriology.

[14]  A. Driessen,et al.  Insights into ABC Transport in Archaea , 2004, Journal of bioenergetics and biomembranes.

[15]  E. Hartmann,et al.  Diversity and evolution of protein translocation. , 2005, Annual review of microbiology.

[16]  A. Driessen,et al.  Archaeal Homolog of Bacterial Type IV Prepilin Signal Peptidases with Broad Substrate Specificity , 2003, Journal of bacteriology.

[17]  J. Brisson,et al.  Identification and Characterization of the Unique N-Linked Glycan Common to the Flagellins and S-layer Glycoprotein of Methanococcus voltae* , 2005, Journal of Biological Chemistry.

[18]  John A. Tainer,et al.  Type IV pilus structure and bacterial pathogenicity , 2004, Nature Reviews Microbiology.

[19]  J. Eichler,et al.  Membrane binding of SRP pathway components in the halophilic archaea Haloferax volcanii. , 2004, European journal of biochemistry.

[20]  R. Macnab Type III flagellar protein export and flagellar assembly. , 2004, Biochimica et biophysica acta.

[21]  FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity. , 2002, FEMS microbiology letters.

[22]  M. Saier,et al.  The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. , 2003, Biochimica et biophysica acta.

[23]  R. Moll Protein-protein, protein-RNA and protein-lipid interactions of signal-recognition particle components in the hyperthermoacidophilic archaeon Acidianus ambivalens. , 2003, The Biochemical journal.

[24]  K. Jarrell,et al.  The archaeal flagellum: a different kind of prokaryotic motility structure. , 2001, FEMS microbiology reviews.

[25]  S. Trachtenberg,et al.  The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili. , 2002, Journal of molecular biology.

[26]  K. Jarrell,et al.  Flagellin genes of Methanococcus vannielii : amplification by the Polymerase Chain Reaction, demonstration of signal peptides and identification of major components of the flagellar filament , 1998, Molecular and General Genetics MGG.

[27]  M. Engelhard,et al.  The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. , 1994, The Journal of biological chemistry.

[28]  Ken F. Jarrell,et al.  Recent Advances in the Structure and Assembly of the Archaeal Flagellum , 2004, Journal of Molecular Microbiology and Biotechnology.

[29]  I. Holland Translocation of bacterial proteins--an overview. , 2004, Biochimica et biophysica acta.

[30]  K. Jarrell,et al.  Cloning and Characterization of Archaeal Type I Signal Peptidase from Methanococcus voltae , 2003, Journal of bacteriology.

[31]  K. Jarrell,et al.  Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae , 2003, Molecular microbiology.

[32]  K. Jarrell,et al.  Archaeal signal peptides—A comparative survey at the genome level , 2003, Protein science : a publication of the Protein Society.

[33]  N. Hand,et al.  Translocation of proteins across archaeal cytoplasmic membranes. , 2004, FEMS microbiology reviews.

[34]  H. König,et al.  Analysis and nucleotide sequence of the genes encoding the surface-layer glycoproteins of the hyperthermophilic methanogens Methanothermus fervidus and Methanothermus sociabilis. , 1991, European journal of biochemistry.

[35]  B. Berks A common export pathway for proteins binding complex redox cofactors? , 1996, Molecular microbiology.

[36]  K. Jarrell,et al.  Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae , 1991, Journal of bacteriology.

[37]  V. Irihimovitch,et al.  Post-translational Secretion of Fusion Proteins in the Halophilic Archaea Haloferax volcanii * , 2003, The Journal of Biological Chemistry.

[38]  J. Lechner,et al.  The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria. , 1987, The Journal of biological chemistry.

[39]  Jörg P. Müller,et al.  The Twin-arginine Signal Peptide of PhoD and the TatAd/Cd Proteins of Bacillus subtilis Form an Autonomous Tat Translocation System* , 2002, The Journal of Biological Chemistry.

[40]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[41]  E. Hartmann,et al.  Prokaryotic Utilization of the Twin-Arginine Translocation Pathway: a Genomic Survey , 2003, Journal of bacteriology.

[42]  Matthias Müller,et al.  Twin-arginine-specific protein export in Escherichia coli. , 2005, Research in microbiology.

[43]  Dieter Oesterhelt,et al.  A novel mode of sensory transduction in archaea: binding protein‐mediated chemotaxis towards osmoprotectants and amino acids , 2002, The EMBO journal.

[44]  W. Wickner,et al.  The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling , 1997, The EMBO journal.

[45]  A. Bolhuis Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? , 2002, Microbiology.

[46]  A. Driessen,et al.  Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus. , 2005, Microbiology.

[47]  K. Nishiyama,et al.  Depletion of SecDF‐YajC causes a decrease in the level of SecG: implication for their functional interaction , 2003, FEBS letters.

[48]  J. Mattick Type IV pili and twitching motility. , 2002, Annual review of microbiology.

[49]  Irmgard Sinning,et al.  SRP-mediated protein targeting: structure and function revisited. , 2004, Biochimica et biophysica acta.

[50]  T. Kudo,et al.  Cloning, expression, and nucleotide sequence of the alpha-amylase gene from the haloalkaliphilic archaeon Natronococcus sp. strain Ah-36 , 1994, Journal of bacteriology.

[51]  A. Driessen,et al.  Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey , 2002, Archives of Microbiology.

[52]  T. Allers,et al.  Archaeal genetics — the third way , 2005, Nature Reviews Genetics.