Fast Fibonacci Encoding Algorithm

Data compression has been widely applied in many data pro- cessing areas. Compression methods use variable-length codes with the shorter codes assigned to symbols or groups of symbols that appear in the data frequently. Fibonacci code, as a representative of these codes, is often utilized for the compression of small numbers. Time consump- tion of encoding as well as decoding algorithms is important for some applications in the data processing area. In this case, eciency of these algorithms is extremely important. There are some works related to the fast decoding of variable-length codes. In this paper, we introduce the Fast Fibonacci encoding algorithm; our approach is up-to 4.6◊ more ecient than the conventional bit-oriented algorithm.

[1]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[2]  David Salomon,et al.  Data compression - The Complete Reference, 4th Edition , 2004 .

[3]  Shmuel Tomi Klein,et al.  Using Fibonacci Compression Codes as Alternatives to Dense Codes , 2008, Data Compression Conference (dcc 2008).

[4]  Michal Krátký,et al.  Benchmarking the Compression of XML Node Streams , 2010, DASFAA Workshops.

[5]  Harry Plantinga An Asymmetric , Semi-adaptive Text Compression Algorithm , 2001 .

[6]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[7]  Paolo Ferragina,et al.  Text Compression , 2009, Encyclopedia of Database Systems.

[8]  Jonathan Goldstein,et al.  Compressing relations and indexes , 1998, Proceedings 14th International Conference on Data Engineering.

[9]  R. Dunlap The Golden Ratio and Fibonacci Numbers , 1997 .

[10]  Hanan Samet,et al.  Data structures for quadtree approximation and compression , 1985, CACM.

[11]  Alberto Apostolico,et al.  Robust transmission of unbounded strings using Fibonacci representations , 1987, IEEE Trans. Inf. Theory.

[12]  M. Livio The Golden Ratio: The Story of Phi, the World's Most Astonishing Number , 2002 .

[13]  Michal Krátký,et al.  Benchmarking Coding Algorithms for the R-tree Compression , 2009, DATESO.

[14]  Shmuel Tomi Klein Fast Decoding of Fibonacci Encoded Texts , 2007, 2007 Data Compression Conference (DCC'07).

[15]  Peter Elias,et al.  Universal codeword sets and representations of the integers , 1975, IEEE Trans. Inf. Theory.

[16]  William R. Hersh,et al.  Managing Gigabytes—Compressing and Indexing Documents and Images (Second Edition) , 2001, Information Retrieval.

[17]  Václav Snásel,et al.  Fast decoding algorithms for variable-lengths codes , 2012, Inf. Sci..

[18]  Shmuel Tomi Klein,et al.  On the Usefulness of Fibonacci Compression Codes , 2010, Comput. J..