Ternary self-orthogonal codes of dual distance three and ternary quantum codes of distance three

Ternary self-orthogonal codes with dual distance three and ternary quantum codes of distance three constructed from ternary self-orthogonal codes are discussed in this paper. Firstly, for given code length n ≥ 8, a ternary [n, k]3 self-orthogonal code with minimal dimension k and dual distance three is constructed. Secondly, for each n ≥ 8, two nested ternary self-orthogonal codes with dual distance two and three are constructed, and consequently ternary quantum code of length n and distance three is constructed via Steane construction. Almost all of these quantum codes constructed via Steane construction are optimal or near optimal, and some of these quantum codes are better than those known before.

[1]  Qing Chen,et al.  All the stabilizer codes of distance 3 , 2009, 0901.1968.

[2]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[3]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[4]  Jian Liu TERNARY QUANTUM CODES OF MINIMUM DISTANCE THREE , 2010 .

[5]  E. M. Rains,et al.  Self-Dual Codes , 2002, math/0208001.

[6]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[7]  Xueliang Li,et al.  Binary Construction of Quantum Codes of Minimum Distance Three and Four , 2004, IEEE Trans. Inf. Theory.

[8]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[9]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[10]  Andrew M. Steane Enlargement of Calderbank-Shor-Steane quantum codes , 1999, IEEE Trans. Inf. Theory.

[11]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[12]  Alexei E. Ashikhmin,et al.  Nonbinary quantum stabilizer codes , 2001, IEEE Trans. Inf. Theory.

[13]  Keqin Feng,et al.  Quantum codes [[6, 2, 3]]p and [[7, 3, 3]]p (p >= 3) exist , 2002, IEEE Trans. Inf. Theory.

[14]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[15]  Neil J. A. Sloane,et al.  Self-Dual Codes over ${\text{GF}}( 3 )$ , 1976 .

[16]  N. J. A. Sloane,et al.  Self-Dual Codes over GF(4) , 1978, J. Comb. Theory, Ser. A.

[17]  M. Hamada Concatenated Quantum Codes Constructible in Polynomial Time: Efficient Decoding and Error Correction , 2008, IEEE Transactions on Information Theory.

[18]  Y. Edel,et al.  Quantum twisted codes , 2000 .

[19]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[20]  T. Beth,et al.  On optimal quantum codes , 2003, quant-ph/0312164.

[21]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[22]  Suat Karadeniz,et al.  Self-dual codes over F2+uF2+vF2+uvF2 , 2010, J. Frankl. Inst..

[23]  Santosh Kumar,et al.  Nonbinary Stabilizer Codes Over Finite Fields , 2005, IEEE Transactions on Information Theory.