Visual Tracking With Weighted Adaptive Local Sparse Appearance Model via Spatio-Temporal Context Learning

Sparse representation has been widely exploited to develop an effective appearance model for object tracking due to its well discriminative capability in distinguishing the target from its surrounding background. However, most of these methods only consider either the holistic representation or the local one for each patch with equal importance, and hence may fail when the target suffers from severe occlusion or large-scale pose variation. In this paper, we propose a simple yet effective approach that exploits rich feature information from reliable patches based on weighted local sparse representation that takes into account the importance of each patch. Specifically, we design a reconstruction-error based weight function with the reconstruction error of each patch via sparse coding to measure the patch reliability. Moreover, we explore spatio-temporal context information to enhance the robustness of the appearance model, in which the global temporal context is learned via incremental subspace and sparse representation learning with a novel dynamic template update strategy to update the dictionary, while the local spatial context considers the correlation between the target and its surrounding background via measuring the similarity among their sparse coefficients. Extensive experimental evaluations on two large tracking benchmarks demonstrate favorable performance of the proposed method over some state-of-the-art trackers.

[1]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[3]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[4]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[5]  Jenq-Neng Hwang,et al.  Tracking Human Under Occlusion Based on Adaptive Multiple Kernels With Projected Gradients , 2013, IEEE Transactions on Multimedia.

[6]  Qingshan Liu,et al.  Improving the Spatial Resolution of FY-3 Microwave Radiation Imager via Fusion With FY-3/MERSI , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Michael K. Ng,et al.  Agglomerative Fuzzy K-Means Clustering Algorithm with Selection of Number of Clusters , 2008, IEEE Transactions on Knowledge and Data Engineering.

[10]  Junzhou Huang,et al.  Robust tracking using local sparse appearance model and K-selection , 2011, CVPR 2011.

[11]  Feiping Nie,et al.  A New Simplex Sparse Learning Model to Measure Data Similarity for Clustering , 2015, IJCAI.

[12]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Laura Sevilla-Lara,et al.  Distribution fields for tracking , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Junseok Kwon,et al.  Tracking by Sampling Trackers , 2011, 2011 International Conference on Computer Vision.

[15]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Weisi Lin,et al.  Visual Object Tracking by Structure Complexity Coefficients , 2015, IEEE Transactions on Multimedia.

[17]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[18]  Jianke Zhu,et al.  A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration , 2014, ECCV Workshops.

[19]  Lei Zhang,et al.  Fast Compressive Tracking , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Rongrong Ji,et al.  Bounding Multiple Gaussians Uncertainty with Application to Object Tracking , 2016, International Journal of Computer Vision.

[21]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Shai Avidan,et al.  Support Vector Tracking , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[23]  Stan Z. Li,et al.  Online Spatio-temporal Structural Context Learning for Visual Tracking , 2012, ECCV.

[24]  Ling Shao,et al.  Visual Tracking Using Strong Classifier and Structural Local Sparse Descriptors , 2015, IEEE Transactions on Multimedia.

[25]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  N. Ahuja,et al.  Robust Visual Tracking via MultiTask Sparse Learning , 2012 .

[27]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[28]  Huchuan Lu,et al.  Visual tracking via adaptive structural local sparse appearance model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[30]  Jinhui Tang,et al.  RGB-D Object Recognition via Incorporating Latent Data Structure and Prior Knowledge , 2015, IEEE Transactions on Multimedia.

[31]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[32]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[33]  Meng Wang,et al.  Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Feiping Nie,et al.  Robust and Sparse Fuzzy K-Means Clustering , 2016, IJCAI.

[35]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Xuelong Li,et al.  A Variational Approach to Simultaneous Image Segmentation and Bias Correction , 2015, IEEE Transactions on Cybernetics.

[38]  Josef Kittler,et al.  Audio Assisted Robust Visual Tracking With Adaptive Particle Filtering , 2015, IEEE Transactions on Multimedia.

[39]  Xin Yu,et al.  Object Tracking With Multi-View Support Vector Machines , 2015, IEEE Transactions on Multimedia.

[40]  Chunhua Shen,et al.  Real-time visual tracking using compressive sensing , 2011, CVPR 2011.

[41]  Qingshan Liu,et al.  Visual Tracking via Boolean Map Representations , 2016, Pattern Recognit..

[42]  Huihui Song Active contours driven by regularised gradient flux flows for image segmentation , 2014 .

[43]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[44]  Dit-Yan Yeung,et al.  Learning a Deep Compact Image Representation for Visual Tracking , 2013, NIPS.

[45]  Qingshan Liu,et al.  Robust object tracking by online Fisher discrimination boosting feature selection , 2016, Comput. Vis. Image Underst..

[46]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[47]  Yuhui Zheng,et al.  Robust visual tracking via self-similarity learning , 2017 .

[48]  Kaihua Zhang,et al.  Real-time visual tracking via online weighted multiple instance learning , 2013, Pattern Recognit..

[49]  Jinhui Tang,et al.  Generalized Deep Transfer Networks for Knowledge Propagation in Heterogeneous Domains , 2016, ACM Trans. Multim. Comput. Commun. Appl..

[50]  Wei Chen,et al.  Robust visual tracking via patch based kernel correlation filters with adaptive multiple feature ensemble , 2016, Neurocomputing.

[51]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  David Zhang,et al.  A Level Set Approach to Image Segmentation With Intensity Inhomogeneity , 2016, IEEE Transactions on Cybernetics.

[53]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[55]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Junseok Kwon,et al.  Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive Basin Hopping Monte Carlo sampling , 2009, CVPR.

[57]  Qingshan Liu,et al.  Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[58]  Zhongfei Zhang,et al.  A survey of appearance models in visual object tracking , 2013, ACM Trans. Intell. Syst. Technol..

[59]  Huihui Song Robust visual tracking via online informative feature selection , 2014 .