ROBUSTIFIED EXPECTED MAXIMUM PRODUCTION FRONTIERS
暂无分享,去创建一个
[1] L. Simar,et al. Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .
[2] Hohsuk Noh. Frontier estimation using kernel smoothing estimators with data transformation , 2014 .
[3] W. Greene. The Econometric Approach to Efficiency Analysis , 2008 .
[4] P. W. Wilson,et al. ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA ESTIMATORS IN NONPARAMETRIC FRONTIER MODELS , 2008, Econometric Theory.
[5] C. Thomas-Agnan,et al. NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.
[6] B. Park,et al. Data envelope fitting with constrained polynomial splines , 2016 .
[7] S. Girard,et al. On kernel smoothing for extremal quantile regression , 2012, 1312.5123.
[8] L. Simar,et al. Stochastic FDH/DEA estimators for frontier analysis , 2008 .
[9] Jon A. Wellner,et al. Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .
[10] L. Simar,et al. Robust nonparametric estimators of monotone boundaries , 2005 .
[11] M. Farrell. The Measurement of Productive Efficiency , 1957 .
[12] P. Rousseeuw. A new infinitesimal approach to robust estimation , 1981 .
[13] W. Meeusen,et al. Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .
[14] D. Aigner,et al. P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .
[15] E. Mammen,et al. On estimation of monotone and concave frontier functions , 1999 .
[16] Léopold Simar,et al. Nonparametric stochastic frontiers: A local maximum likelihood approach , 2007 .
[17] B. Park,et al. THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.
[18] Léopold Simar,et al. Parametric approximations of nonparametric frontiers , 2005 .
[19] A. Guillou,et al. A Γ-moment approach to monotonic boundary estimation , 2014 .
[20] J. Florens,et al. Nonparametric frontier estimation: a robust approach , 2002 .
[21] Léopold Simar,et al. Detecting Outliers in Frontier Models: A Simple Approach , 2003 .
[22] David C. Wheelock,et al. Non-Parametric, Unconditional Quantile Estimation for Efficiency Analysis With an Application to Federal Reserve Check Processing Operations , 2007 .
[23] I. Gijbels,et al. Robustness and inference in nonparametric partial frontier modeling , 2011 .
[24] A. Ruiz-Gazen,et al. ROBUST NONPARAMETRIC FRONTIER ESTIMATORS: QUALITATIVE ROBUSTNESS AND INFLUENCE FUNCTION , 2006 .
[25] Léopold Simar,et al. Measuring firm performance using nonparametric quantile-type distances , 2017 .
[26] Soumendu Sundar Mukherjee,et al. Weak convergence and empirical processes , 2019 .
[27] Léopold Simar,et al. Frontier estimation in the presence of measurement error with unknown variance , 2015 .
[28] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[29] J. Florens,et al. Regularization of Nonparametric Frontier Estimators , 2012 .
[30] J. Florens,et al. Frontier estimation and extreme values theory , 2010, 1011.5722.
[31] D. Ruppert. Robust Statistics: The Approach Based on Influence Functions , 1987 .
[32] Irène Gijbels,et al. Testing tail monotonicity by constrained copula estimation , 2013 .