ROBUSTIFIED EXPECTED MAXIMUM PRODUCTION FRONTIERS

The aim of this paper is to construct a robust nonparametric estimator for the production frontier. We study this problem under a regression model with one-sided errors where the regression function defines the achievable maximum output, for a given level of inputs-usage, and the regression error defines the inefficiency term. The main tool is a concept of partial regression boundary defined as a special probability-weighted moment. This concept motivates a robustified unconditional alternative to the pioneering class of nonparametric conditional expected maximum production functions. We prove that both the resulting benchmark partial frontier and its estimator share the desirable monotonicity of the true full frontier. We derive the asymptotic properties of the partial and full frontier estimators, and unravel their behavior from a robustness theory point of view. We provide numerical illustrations and Monte Carlo evidence that the presented concept of unconditional expected maximum production functions is more efficient and reliable in filtering out noise than the original conditional version. The methodology is very easy and fast to implement. Its usefulness is discussed through two concrete datasets from the sector of Delivery Services, where outliers are likely to affect the traditional conditional approach.

[1]  L. Simar,et al.  Nonparametric efficiency analysis: a multivariate conditional quantile approach , 2007 .

[2]  Hohsuk Noh Frontier estimation using kernel smoothing estimators with data transformation , 2014 .

[3]  W. Greene The Econometric Approach to Efficiency Analysis , 2008 .

[4]  P. W. Wilson,et al.  ASYMPTOTICS AND CONSISTENT BOOTSTRAPS FOR DEA ESTIMATORS IN NONPARAMETRIC FRONTIER MODELS , 2008, Econometric Theory.

[5]  C. Thomas-Agnan,et al.  NONPARAMETRIC FRONTIER ESTIMATION: A CONDITIONAL QUANTILE-BASED APPROACH , 2005, Econometric Theory.

[6]  B. Park,et al.  Data envelope fitting with constrained polynomial splines , 2016 .

[7]  S. Girard,et al.  On kernel smoothing for extremal quantile regression , 2012, 1312.5123.

[8]  L. Simar,et al.  Stochastic FDH/DEA estimators for frontier analysis , 2008 .

[9]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[10]  L. Simar,et al.  Robust nonparametric estimators of monotone boundaries , 2005 .

[11]  M. Farrell The Measurement of Productive Efficiency , 1957 .

[12]  P. Rousseeuw A new infinitesimal approach to robust estimation , 1981 .

[13]  W. Meeusen,et al.  Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error , 1977 .

[14]  D. Aigner,et al.  P. Schmidt, 1977,?Formulation and estimation of stochastic frontier production function models,? , 1977 .

[15]  E. Mammen,et al.  On estimation of monotone and concave frontier functions , 1999 .

[16]  Léopold Simar,et al.  Nonparametric stochastic frontiers: A local maximum likelihood approach , 2007 .

[17]  B. Park,et al.  THE FDH ESTIMATOR FOR PRODUCTIVITY EFFICIENCY SCORES , 2000, Econometric Theory.

[18]  Léopold Simar,et al.  Parametric approximations of nonparametric frontiers , 2005 .

[19]  A. Guillou,et al.  A Γ-moment approach to monotonic boundary estimation , 2014 .

[20]  J. Florens,et al.  Nonparametric frontier estimation: a robust approach , 2002 .

[21]  Léopold Simar,et al.  Detecting Outliers in Frontier Models: A Simple Approach , 2003 .

[22]  David C. Wheelock,et al.  Non-Parametric, Unconditional Quantile Estimation for Efficiency Analysis With an Application to Federal Reserve Check Processing Operations , 2007 .

[23]  I. Gijbels,et al.  Robustness and inference in nonparametric partial frontier modeling , 2011 .

[24]  A. Ruiz-Gazen,et al.  ROBUST NONPARAMETRIC FRONTIER ESTIMATORS: QUALITATIVE ROBUSTNESS AND INFLUENCE FUNCTION , 2006 .

[25]  Léopold Simar,et al.  Measuring firm performance using nonparametric quantile-type distances , 2017 .

[26]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[27]  Léopold Simar,et al.  Frontier estimation in the presence of measurement error with unknown variance , 2015 .

[28]  Ing Rj Ser Approximation Theorems of Mathematical Statistics , 1980 .

[29]  J. Florens,et al.  Regularization of Nonparametric Frontier Estimators , 2012 .

[30]  J. Florens,et al.  Frontier estimation and extreme values theory , 2010, 1011.5722.

[31]  D. Ruppert Robust Statistics: The Approach Based on Influence Functions , 1987 .

[32]  Irène Gijbels,et al.  Testing tail monotonicity by constrained copula estimation , 2013 .