Randomized Subspace Iteration: Analysis of Canonical Angles and Unitarily Invariant Norms
暂无分享,去创建一个
[1] Yuji Nakatsukasa,et al. Accuracy of singular vectors obtained by projection-based SVD methods , 2017 .
[2] Ilse C. F. Ipsen,et al. Low-Rank Matrix Approximations Do Not Need a Singular Value Gap , 2018, SIAM J. Matrix Anal. Appl..
[3] Danny C. Sorensen,et al. A DEIM Induced CUR Factorization , 2014, SIAM J. Sci. Comput..
[4] Shang-Hua Teng,et al. Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices , 2003, SIAM J. Matrix Anal. Appl..
[5] Eun-Young Lee. Extension of Rotfel’d Theorem , 2011 .
[6] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[7] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[8] Michael W. Mahoney. Randomized Algorithms for Matrices and Data , 2011, Found. Trends Mach. Learn..
[9] Gene H. Golub,et al. Numerical methods for computing angles between linear subspaces , 1971, Milestones in Matrix Computation.
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[12] Christos Boutsidis,et al. Spectral Clustering via the Power Method - Provably , 2013, ICML.
[13] Michiel E. Hochstenbach,et al. Harmonic and Refined Extraction Methods for the Singular Value Problem, with Applications in Least Squares Problems , 2004 .
[14] Steven L. Brunton,et al. Randomized Dynamic Mode Decomposition , 2017, SIAM J. Appl. Dyn. Syst..
[15] Misha Elena Kilmer,et al. A randomized tensor singular value decomposition based on the t‐product , 2016, Numer. Linear Algebra Appl..
[16] Siam J. Sci,et al. SUBSPACE ITERATION RANDOMIZATION AND SINGULAR VALUE PROBLEMS , 2015 .
[17] Ping Tak Peter Tang,et al. FEAST As A Subspace Iteration Eigensolver Accelerated By Approximate Spectral Projection , 2013, SIAM J. Matrix Anal. Appl..
[18] Lek-Heng Lim,et al. Schubert Varieties and Distances between Subspaces of Different Dimensions , 2014, SIAM J. Matrix Anal. Appl..
[19] Anthony Nouy,et al. Randomized linear algebra for model reduction. Part I: Galerkin methods and error estimation , 2018, Advances in Computational Mathematics.
[20] Ilse C. F. Ipsen,et al. Conditioning of Leverage Scores and Computation by QR Decomposition , 2015, SIAM J. Matrix Anal. Appl..
[21] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[22] Christos Boutsidis,et al. Efficient Dimensionality Reduction for Canonical Correlation Analysis , 2012, SIAM J. Sci. Comput..
[23] Volkan Cevher,et al. Practical Sketching Algorithms for Low-Rank Matrix Approximation , 2016, SIAM J. Matrix Anal. Appl..
[24] F. L. Bauer. Das Verfahren der Treppeniteration und verwandte Verfahren zur Lösung algebraischer Eigenwertprobleme , 1957 .
[25] Ilse C. F. Ipsen,et al. Structural Convergence Results for Approximation of Dominant Subspaces from Block Krylov Spaces , 2016, SIAM J. Matrix Anal. Appl..
[26] P. Wedin. On angles between subspaces of a finite dimensional inner product space , 1983 .