Deviation of ergodic averages for area-preserving flows on surfaces of higher genus

We prove a substantial part of a conjecture of Kontsevich and Zorich on the Lyapunov exponents of the Teichmuller geodesic flow on the deviation of ergodic averages for generic conservative flows on higher genus surfaces. The result on the Teichmuller flow is formulated in terms of a (symplectic) cocycle on the real cohomology bundle over the moduli space of holomorphic differentials introduced by Kontsevich and Zorich. We prove that such a cocycle is non-uniformly hyperbolic, that is, all of its Lyapunov exponents are different from zero. In particular, the number of strictly positive exponents is equal to the genus of the surface. From this theorem we derive that ergodic integrals of smooth functions for generic area-preserving flows on higher genus surfaces grow with time according to a power-law asymptotics with a number of terms equal to the genus of the surface and stricltly positive exponents equal to the non-negative Lyapunov exponents of the Kontsevich-Zorich cocycle. In particular, for conservative flows on surfaces of higher genus, the deviation of ergodic averages for a generic smooth function obeys a power law with a strictly positive exponent and, consequently, the Denjoy-Koksma inequality does not hold. The derivation of the deviation theorem relies in a fundamental way on the notion of invariant distribution for flows on surfaces and the related notion of basic current for the orbit foliation.

[1]  Mogens Flensted‐Jensen,et al.  GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .

[2]  M. Ratner Rigidity of time changes for horocycle flows , 1986 .

[3]  L. Bers SPACES OF DEGENERATING RIEMANN SURFACES , 1974 .

[4]  A. Katok Interval exchange transformations and some special flows are not mixing , 1980 .

[5]  M. Taniguchi A note on the second variational formulas of functionals on Riemann surfaces , 1989 .

[6]  Kay-Uwe Schaumlöffel Multiplicative ergodic theorems in infinite dimensions , 1991 .

[7]  A. Zorich Asymptotic flag of an orientable measured foliation , 1993 .

[8]  V. Buchstaber,et al.  Solitons, Geometry, and Topology: On the Crossroad , 1997 .

[9]  S. Nag,et al.  Complex Analytic Theory of Teichmuller Spaces , 1988 .

[10]  Masahiko Taniguchi,et al.  An Introduction to Teichmuller Spaces , 1992 .

[11]  LYAPUNOV EXPONENTS AND HODGE THEORY , 1997, hep-th/9701164.

[12]  John D. Fay Theta Functions on Riemann Surfaces , 1973 .

[13]  H. Masur,et al.  Asymptotic formulas on flat surfaces , 2001, Ergodic Theory and Dynamical Systems.

[14]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[15]  R. Hain,et al.  Mapping Class Groups and Moduli Spaces of Riemann Surfaces , 1993 .

[16]  M. Denker,et al.  On the central limit theorem for dynamical systems , 1987 .

[17]  A. Yamada Precise variational formulas for abelian differentials , 1980 .

[18]  W. Veech The Teichmuller Geodesic Flow , 1986 .

[19]  I. Chavel Riemannian Geometry: Subject Index , 2006 .

[20]  Georges de Rham Variétés différentiables : formes, courants, formes harmoniques , 1955 .

[21]  W. Veech Gauss measures for transformations on the space of interval exchange maps , 1982 .

[22]  T. Broadbent Complex Variables , 1970, Nature.

[23]  Howard Masur,et al.  Hausdorff dimension of sets of nonergodic measured foliations , 1991 .

[24]  L. Bers Finite dimensional Teichmüller spaces and generalizations , 1981 .

[25]  Bert Fristedt,et al.  A modern approach to probability theory , 1996 .

[26]  Anton Zorich,et al.  Finite Gauss measure on the space of interval exchange transformations , 1996 .

[27]  M. Berger,et al.  Le Spectre d'une Variete Riemannienne , 1971 .

[28]  M. R. Herman Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .

[29]  A. Tromba Teichmüller Theory in Riemannian Geometry , 2004 .

[30]  John H. Hubbard,et al.  Quadratic differentials and foliations , 1979 .

[31]  W. Veech,et al.  Moduli spaces of quadratic differentials , 1990 .

[32]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[33]  F. Gardiner Teichmüller Theory and Quadratic Differentials , 1987 .

[34]  G. Forni The cohomological equation for area-preserving flows on compact surfaces , 1995 .

[35]  M. Taniguchi The behavior of the extremal length function on arbitrary Riemann surface , 1991 .

[36]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[37]  G. Rauzy,et al.  Stricte ergodicité des échanges d'intervalles , 1980 .

[38]  D. Newton,et al.  ERGODIC THEORY (Cambridge Studies in Advanced Mathematics, 2) , 1984 .

[39]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[40]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .

[41]  Bruce L. Reinhart Differential Geometry of Foliations , 1983 .

[42]  C. Caramanis What is ergodic theory , 1963 .

[43]  Phillip A. Griffiths,et al.  Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems , 1970 .

[44]  L. Young Developments in chaotic dynamics , 1998 .

[45]  Y. Wong,et al.  Differentiable Manifolds , 2009 .

[46]  I. Nikolaev,et al.  Flows on 2-dimensional Manifolds: An Overview , 1999 .

[47]  M. Burger Horocycle flow on geometrically finite surfaces , 1990 .

[48]  D. Sullivan The Dirichlet problem at infinity for a negatively curved manifold , 1983 .

[49]  W. Veech Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards , 1989 .

[50]  Anton Zorich,et al.  Connected components of the moduli spaces of Abelian differentials with prescribed singularities , 2002, math/0201292.

[51]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[52]  Marina Ratner,et al.  The rate of mixing for geodesic and horocycle flows , 1987, Ergodic Theory and Dynamical Systems.

[53]  Shing-Tung Yau,et al.  Isoperimetric constants and the first eigenvalue of a compact riemannian manifold , 1975 .

[54]  A. N. Zemlyakov,et al.  Topological transitivity of billiards in polygons , 1975 .

[55]  B. Reinhart HARMONIC INTEGRALS ON FOLIATED MANIFOLDS. , 1959 .

[56]  S. Yamada Weil-Peterson [Petersson] convexity of the energy functional on classical and universal Teichmüller spaces , 1999 .

[57]  G. Forni SOLUTIONS OF THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS ON COMPACT SURFACES OF HIGHER GENUS , 1997 .

[58]  S. Helgason Groups and geometric analysis , 1984 .

[59]  I. Nikolaev,et al.  Flows on 2-dimensional Manifolds , 1999 .

[60]  L. Young Entropy of continuous flows on compact 2-manifolds , 1977 .

[61]  Steven P. Kerckhoff,et al.  Ergodicity of billiard flows and quadratic differentials , 1986 .

[62]  B. M. Fulk MATH , 1992 .