Deviation of ergodic averages for area-preserving flows on surfaces of higher genus
暂无分享,去创建一个
[1] Mogens Flensted‐Jensen,et al. GROUPS AND GEOMETRIC ANALYSIS Integral Geometry, Invariant Differential Operators, and Spherical Functions (Pure and Applied Mathematics: A Series of Monographs and Textbooks) , 1985 .
[2] M. Ratner. Rigidity of time changes for horocycle flows , 1986 .
[3] L. Bers. SPACES OF DEGENERATING RIEMANN SURFACES , 1974 .
[4] A. Katok. Interval exchange transformations and some special flows are not mixing , 1980 .
[5] M. Taniguchi. A note on the second variational formulas of functionals on Riemann surfaces , 1989 .
[6] Kay-Uwe Schaumlöffel. Multiplicative ergodic theorems in infinite dimensions , 1991 .
[7] A. Zorich. Asymptotic flag of an orientable measured foliation , 1993 .
[8] V. Buchstaber,et al. Solitons, Geometry, and Topology: On the Crossroad , 1997 .
[9] S. Nag,et al. Complex Analytic Theory of Teichmuller Spaces , 1988 .
[10] Masahiko Taniguchi,et al. An Introduction to Teichmuller Spaces , 1992 .
[11] LYAPUNOV EXPONENTS AND HODGE THEORY , 1997, hep-th/9701164.
[12] John D. Fay. Theta Functions on Riemann Surfaces , 1973 .
[13] H. Masur,et al. Asymptotic formulas on flat surfaces , 2001, Ergodic Theory and Dynamical Systems.
[14] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[15] R. Hain,et al. Mapping Class Groups and Moduli Spaces of Riemann Surfaces , 1993 .
[16] M. Denker,et al. On the central limit theorem for dynamical systems , 1987 .
[17] A. Yamada. Precise variational formulas for abelian differentials , 1980 .
[18] W. Veech. The Teichmuller Geodesic Flow , 1986 .
[19] I. Chavel. Riemannian Geometry: Subject Index , 2006 .
[20] Georges de Rham. Variétés différentiables : formes, courants, formes harmoniques , 1955 .
[21] W. Veech. Gauss measures for transformations on the space of interval exchange maps , 1982 .
[22] T. Broadbent. Complex Variables , 1970, Nature.
[23] Howard Masur,et al. Hausdorff dimension of sets of nonergodic measured foliations , 1991 .
[24] L. Bers. Finite dimensional Teichmüller spaces and generalizations , 1981 .
[25] Bert Fristedt,et al. A modern approach to probability theory , 1996 .
[26] Anton Zorich,et al. Finite Gauss measure on the space of interval exchange transformations , 1996 .
[27] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[28] M. R. Herman. Sur la Conjugaison Différentiable des Difféomorphismes du Cercle a des Rotations , 1979 .
[29] A. Tromba. Teichmüller Theory in Riemannian Geometry , 2004 .
[30] John H. Hubbard,et al. Quadratic differentials and foliations , 1979 .
[31] W. Veech,et al. Moduli spaces of quadratic differentials , 1990 .
[32] L. Young,et al. STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .
[33] F. Gardiner. Teichmüller Theory and Quadratic Differentials , 1987 .
[34] G. Forni. The cohomological equation for area-preserving flows on compact surfaces , 1995 .
[35] M. Taniguchi. The behavior of the extremal length function on arbitrary Riemann surface , 1991 .
[36] H. Masur. Interval Exchange Transformations and Measured Foliations , 1982 .
[37] G. Rauzy,et al. Stricte ergodicité des échanges d'intervalles , 1980 .
[38] D. Newton,et al. ERGODIC THEORY (Cambridge Studies in Advanced Mathematics, 2) , 1984 .
[39] J. Zukas. Introduction to the Modern Theory of Dynamical Systems , 1998 .
[40] W. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .
[41] Bruce L. Reinhart. Differential Geometry of Foliations , 1983 .
[42] C. Caramanis. What is ergodic theory , 1963 .
[43] Phillip A. Griffiths,et al. Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems , 1970 .
[44] L. Young. Developments in chaotic dynamics , 1998 .
[45] Y. Wong,et al. Differentiable Manifolds , 2009 .
[46] I. Nikolaev,et al. Flows on 2-dimensional Manifolds: An Overview , 1999 .
[47] M. Burger. Horocycle flow on geometrically finite surfaces , 1990 .
[48] D. Sullivan. The Dirichlet problem at infinity for a negatively curved manifold , 1983 .
[49] W. Veech. Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards , 1989 .
[50] Anton Zorich,et al. Connected components of the moduli spaces of Abelian differentials with prescribed singularities , 2002, math/0201292.
[51] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[52] Marina Ratner,et al. The rate of mixing for geodesic and horocycle flows , 1987, Ergodic Theory and Dynamical Systems.
[53] Shing-Tung Yau,et al. Isoperimetric constants and the first eigenvalue of a compact riemannian manifold , 1975 .
[54] A. N. Zemlyakov,et al. Topological transitivity of billiards in polygons , 1975 .
[55] B. Reinhart. HARMONIC INTEGRALS ON FOLIATED MANIFOLDS. , 1959 .
[56] S. Yamada. Weil-Peterson [Petersson] convexity of the energy functional on classical and universal Teichmüller spaces , 1999 .
[57] G. Forni. SOLUTIONS OF THE COHOMOLOGICAL EQUATION FOR AREA-PRESERVING FLOWS ON COMPACT SURFACES OF HIGHER GENUS , 1997 .
[58] S. Helgason. Groups and geometric analysis , 1984 .
[59] I. Nikolaev,et al. Flows on 2-dimensional Manifolds , 1999 .
[60] L. Young. Entropy of continuous flows on compact 2-manifolds , 1977 .
[61] Steven P. Kerckhoff,et al. Ergodicity of billiard flows and quadratic differentials , 1986 .
[62] B. M. Fulk. MATH , 1992 .