Predictive Control of AC–AC Modular Multilevel Converters

Multilevel converters can reach medium-voltage operation increasing the efficiency of high-power applications. Among the existing multilevel converter topologies, the modular multilevel converter (MMC) provides the advantages of high modularity, availability, and high power quality. Moreover, the main advantage compared to cascaded multilevel converters is the lack of an input transformer which results in a reduction of cooling requirements, size, and cost. One of the drawbacks of this topology when used as an ac-ac converter is the input and output frequency components in the control loop, resulting in a more complex controller design. In this paper, a single-phase ac-ac MMC predictive control approach is proposed. The controller minimizes the input, output, and circulating current errors and balances the dc voltages. Experimental results show the performance of the proposed predictive control scheme.

[1]  Daniel E. Quevedo,et al.  Model Predictive Control of an Asymmetric Flying Capacitor Converter , 2009, IEEE Transactions on Industrial Electronics.

[2]  Marcelo A. Pérez,et al.  Input Current Harmonics in a Regenerative Multicell Inverter With Single-Phase PWM Rectifiers , 2009, IEEE Transactions on Industrial Electronics.

[3]  Reza Iravani,et al.  Dynamic performance of a modular multilevel back-to-back HVDC system , 2010, 2011 IEEE Power and Energy Society General Meeting.

[4]  H. Akagi,et al.  Control and Experiment of Pulsewidth-Modulated Modular Multilevel Converters , 2009, IEEE Transactions on Power Electronics.

[5]  M. Marchesoni,et al.  Development of open-loop and closed-loop techniques for the optimization of modular multilevel conversion structures , 2006, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006..

[6]  Marko Petkovšek,et al.  Digital control of a modular multilevel voltage source , 2003, IEEE International Conference on Industrial Technology, 2003.

[7]  J. Fernando Silva,et al.  Optimal Predictive Control of Three-Phase NPC Multilevel Converter for Power Quality Applications , 2008, IEEE transactions on industrial electronics (1982. Print).

[8]  H. P. Mohammadi,et al.  A Transformerless Medium-Voltage STATCOM Topology Based on Extended Modular Multilevel Converters , 2011, IEEE Transactions on Power Electronics.

[9]  C. Klumpner,et al.  Implementation of a hybrid AC/AC direct power converter with unity voltage transfer ratio , 2006, Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC '06..

[10]  Bin Wu,et al.  Multilevel Voltage-Source-Converter Topologies for Industrial Medium-Voltage Drives , 2007, IEEE Transactions on Industrial Electronics.

[11]  D. Peftitsis,et al.  High-Power Modular Multilevel Converters With SiC JFETs , 2010, IEEE Transactions on Power Electronics.

[12]  Zheng Xu,et al.  Impact of Sampling Frequency on Harmonic Distortion for Modular Multilevel Converter , 2011, IEEE Transactions on Power Delivery.

[13]  Haitham Abu-Rub,et al.  Model Predictive Control of Multilevel Cascaded H-Bridge Inverters , 2010, IEEE Transactions on Industrial Electronics.

[14]  Meng Yeong Lee,et al.  Space-Vector Modulated Multilevel Matrix Converter , 2010, IEEE Transactions on Industrial Electronics.

[15]  Marcelo A. Pérez,et al.  Predictive Control Algorithm Technique for Multilevel Asymmetric Cascaded H-Bridge Inverters , 2008, IEEE Transactions on Industrial Electronics.

[16]  Fang Zheng Peng,et al.  Multilevel inverters: a survey of topologies, controls, and applications , 2002, IEEE Trans. Ind. Electron..

[17]  Rainer Marquardt,et al.  A new AC/AC multilevel converter family , 2005, IEEE Transactions on Industrial Electronics.

[18]  P. Wheeler,et al.  Implementation of a Hybrid AC–AC Direct Power Converter With Unity Voltage Transfer , 2008, IEEE Transactions on Power Electronics.

[19]  U. Ammann,et al.  Model Predictive Control—A Simple and Powerful Method to Control Power Converters , 2009, IEEE Transactions on Industrial Electronics.

[20]  Rainer Marquardt,et al.  An innovative modular multilevel converter topology suitable for a wide power range , 2003, 2003 IEEE Bologna Power Tech Conference Proceedings,.

[21]  Marc Hiller,et al.  Modulation, Losses, and Semiconductor Requirements of Modular Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[22]  Hirofumi Akagi Classification, Terminology, and Application of the Modular Multilevel Cascade Converter (MMCC) , 2011 .

[23]  Marcelo A. Pérez,et al.  Regenerative medium-voltage AC drive based on a multicell arrangement with reduced energy storage requirements , 2005, IEEE Transactions on Industrial Electronics.

[24]  Marcelo A. Pérez,et al.  Performance Evaluation of a Multicell Topology Implemented With Single-Phase Nonregenerative Cells Under Unbalanced Supply Voltages , 2007, IEEE Transactions on Industrial Electronics.

[25]  L.G. Franquelo,et al.  The age of multilevel converters arrives , 2008, IEEE Industrial Electronics Magazine.

[26]  H. Akagi,et al.  Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC) , 2011, IEEE Transactions on Power Electronics.

[27]  Ralph Kennel,et al.  Predictive control in power electronics and drives , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[28]  U N Gnanarathna,et al.  Efficient Modeling of Modular Multilevel HVDC Converters (MMC) on Electromagnetic Transient Simulation Programs , 2011, IEEE Transactions on Power Delivery.

[29]  Stephen J. Finney,et al.  A Modified Stationary Reference Frame-Based Predictive Current Control With Zero Steady-State Error for LCL Coupled Inverter-Based Distributed Generation Systems , 2011, IEEE Transactions on Industrial Electronics.