Logarithmic limit sets of real semi-algebraic sets

This paper is about the logarithmic limit sets of real semi-algebraic sets, and, more generally, about the logarithmic limit sets of sets definable in an o-minimal, polynomially bounded structure. We prove that most of the properties of the logarithmic limit sets of complex algebraic sets hold in the real case. This include the polyhedral structure and the relation with the theory of non-archimedean fields, tropical geometry and Maslov dequantization.

[1]  Douglas Lind,et al.  Non-archimedean amoebas and tropical varieties , 2004, math/0408311.

[2]  Patrick Speissegger,et al.  The Pfaffian closure of an o-minimal structure , 1997, math/9710220.

[3]  Charles Steinhorn,et al.  Tame Topology and O-Minimal Structures , 2008 .

[4]  Christopher L. Miller Expansions of the Real Field with Power Functions , 1994, Ann. Pure Appl. Log..

[5]  A. Macintyre,et al.  The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .

[6]  Alex Wilkie,et al.  Quasianalytic Denjoy-Carleman classes and o-minimality , 2003 .

[7]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[8]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[9]  Oleg Viro,et al.  Dequantization of Real Algebraic Geometry on Logarithmic Paper , 2000, math/0005163.

[10]  Grigory Mikhalkin,et al.  Amoebas of Algebraic Varieties and Tropical Geometry , 2004, math/0403015.

[11]  D. Alessandrini A compactification for the spaces of convex projective structures on manifolds , 2007, 0801.0165.

[12]  L. Dries,et al.  Geometric categories and o-minimal structures , 1996 .

[13]  Lou van den Dries,et al.  THE REAL FIELD WITH CONVERGENT GENERALIZED POWER SERIES , 1998 .

[14]  George M. Bergman,et al.  The logarithmic limit-set of an algebraic variety , 1971 .

[15]  Lou van den Dries,et al.  The Field of Reals with Multisummable Series and the Exponential Function , 2000 .

[16]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[17]  M. Coste AN INTRODUCTION TO O-MINIMAL GEOMETRY , 2002 .

[18]  Chris Miller,et al.  EXPONENTIATION IS HARD TO AVOID , 1994 .

[19]  R. Bieri,et al.  The geometry of the set of characters iduced by valuations. , 1984 .

[20]  Mike Develin,et al.  Tropical Polytopes and Cellular Resolutions , 2007, Exp. Math..