A Discussion on Gradient Damage and Phase-Field Models for Brittle Fracture

Gradient-enhanced damage models find their roots in damage mechanics, which is a smeared approach from the onset, and gradients were added to restore well-posedness beyond a critical strain level. The phase-field approach to brittle fracture departs from a discontinuous description of failure, where the distribution function is regularised, which also leads to the inclusion of spatial gradients. Herein, we will consider both approaches, and discuss their similarities and differences.

[1]  B. Bourdin,et al.  The Variational Approach to Fracture , 2008 .

[2]  B. Bourdin,et al.  Numerical experiments in revisited brittle fracture , 2000 .

[3]  Cv Clemens Verhoosel,et al.  Phase-field models for brittle and cohesive fracture , 2014 .

[4]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[5]  Mgd Marc Geers,et al.  Strain-based transient-gradient damage model for failure analyses , 1998 .

[6]  Claudia Comi,et al.  Computational modelling of gradient‐enhanced damage in quasi‐brittle materials , 1999 .

[7]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[8]  Jean-Jacques Marigo,et al.  Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments , 2009 .

[9]  Gilles A. Francfort,et al.  Revisiting brittle fracture as an energy minimization problem , 1998 .

[10]  D. Ngo,et al.  Finite Element Analysis of Reinforced Concrete Beams , 1967 .

[11]  R. de Borst,et al.  A Gradient-Enhanced Damage Approach to Fracture , 1996 .

[12]  Jerzy Pamin,et al.  Dispersion analysis and element‐free Galerkin solutions of second‐ and fourth‐order gradient‐enhanced damage models , 2000 .

[13]  Rhj Ron Peerlings,et al.  Gradient enhanced damage for quasi-brittle materials , 1996 .

[14]  Christian Miehe,et al.  A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits , 2010 .

[15]  Julien Réthoré,et al.  A two‐scale approach for fluid flow in fractured porous media , 2006 .

[16]  Christian Miehe,et al.  Thermodynamically consistent phase‐field models of fracture: Variational principles and multi‐field FE implementations , 2010 .

[17]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[18]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[19]  A. Needleman,et al.  A cohesive segments method for the simulation of crack growth , 2003 .

[20]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[21]  A. Ingraffea,et al.  Numerical modeling of discrete crack propagation in reinforced and plain concrete , 1985 .

[22]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .