Single-row equidistant facility layout as a special case of single-row facility layout

In this paper we discuss two particular layout problems, namely the Single-Row Equidistant Facility Layout Problem (SREFLP) and the Single-Row Facility Layout Problem (SRFLP). Our aim is to consolidate the two respective branches in the layout literature. We show that the SREFLP is not only a special case of the Quadratic Assignment Problem but also a special case of the SRFLP. This new connection is relevant as the strongest exact methods for the SRFLP outperform the best approaches specialised to the SREFLP. We describe and compare the exact approaches for the SRFLP, the SREFLP and Linear Arrangement that is again a special case of the SREFLP. In a computational study we showcase that the strongest exact approach for the SRFLP clearly outperforms the strongest exact approach tailored to the SREFLP on medium and large benchmark instances from the literature.

[1]  Andrew Kusiak,et al.  Machine Layout Problem in Flexible Manufacturing Systems , 1988, Oper. Res..

[2]  Juan José Salazar González,et al.  Decorous Lower Bounds for Minimum Linear Arrangement , 2011, INFORMS J. Comput..

[3]  Takashi Obata,et al.  Quadratic assignment problem: evaluation of exact and heuristic algorithms , 1979 .

[4]  Kourosh Eshghi,et al.  An efficient tabu algorithm for the single row facility layout problem , 2010, Eur. J. Oper. Res..

[5]  Gerhard Reinelt A branch-and-cut algorithm with betweenness variables for the Linear Arrangement Problem , 2010 .

[6]  Richard M. Karp,et al.  Mapping the genome: some combinatorial problems arising in molecular biology , 1993, STOC.

[7]  Andrew A. Kennings,et al.  A semidefinite optimization approach for the single-row layout problem with unequal dimensions , 2005, Discret. Optim..

[8]  Thomas E. Vollmann,et al.  An Experimental Comparison of Techniques for the Assignment of Facilities to Locations , 1968, Oper. Res..

[9]  Markus Chimani,et al.  Exact Approaches to Multi-level Vertical Orderings , 2011 .

[10]  Satish Rao,et al.  New Approximation Techniques for Some Linear Ordering Problems , 2005, SIAM J. Comput..

[11]  David Romero,et al.  Methods for the one-dimensional space allocation problem , 1990, Comput. Oper. Res..

[12]  André R. S. Amaral An Exact Approach to the One-Dimensional Facility Layout Problem , 2008, Oper. Res..

[13]  Panagiotis Kouvelis,et al.  Unidirectional Loop Network Layout Problem in Automated Manufacturing Systems , 1992, Oper. Res..

[14]  Mário Mestria,et al.  Metaheuristic methods for a class of the facility layout problem , 2000, J. Intell. Manuf..

[15]  Gary L. Hogg,et al.  One-dimensional machine location problems in a multi-product flowline with equidistant locations , 1998, Eur. J. Oper. Res..

[16]  De Leone,et al.  Computational Optimization and Applications Volume 34, Number 2, June 2006 , 2006 .

[17]  Bhaba R. Sarker,et al.  Reducing work-in-process movement for multiple products in one-dimensional layout problems , 1997 .

[18]  Zvi Drezner,et al.  Finding a cluster of points and the grey pattern quadratic assignment problem , 2006, OR Spectr..

[19]  JOSEP DÍAZ,et al.  A survey of graph layout problems , 2002, CSUR.

[20]  Franz Rendl,et al.  Computational experience with a bundle approach for semidefinite cutting plane relaxations of Max-Cut and Equipartition , 2006, Math. Program..

[21]  Jordi Petit,et al.  Combining Spectral Sequencing and Parallel Simulated Annealing for the MINLA Problem , 2003, Parallel Process. Lett..

[22]  Franz Rendl,et al.  Solving Max-Cut to optimality by intersecting semidefinite and polyhedral relaxations , 2009, Math. Program..

[23]  Bhaba R. Sarker,et al.  The amoebic matrix and one-dimensional machine location problems , 1990 .

[24]  D. Younger Minimum Feedback Arc Sets for a Directed Graph , 1963 .

[25]  Adam N. Letchford,et al.  A polyhedral approach to the single row facility layout problem , 2013, Math. Program..

[26]  Bojan Mohar,et al.  Optimal linear labelings and eigenvalues of graphs , 1992, Discret. Appl. Math..

[27]  Jordi Petit,et al.  Experiments on the minimum linear arrangement problem , 2003, ACM J. Exp. Algorithmics.

[28]  R. Durbin,et al.  Optimal numberings of an N N array , 1986 .

[29]  Michael Jünger,et al.  An SDP approach to multi-level crossing minimization , 2012, JEAL.

[30]  Bhaba R. Sarker,et al.  A two-phase procedure for duplicating bottleneck machines in a linear layout, cellular manufacturing system , 1994 .

[31]  André R. S. Amaral On the exact solution of a facility layout problem , 2006, Eur. J. Oper. Res..

[32]  Markus Chimani,et al.  Multi-level Verticality Optimization: Concept, Strategies, and Drawing Scheme , 2013, J. Graph Algorithms Appl..

[33]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[34]  Nicos Christofides,et al.  An Exact Algorithm for the Quadratic Assignment Problem on a Tree , 1989, Oper. Res..

[35]  Franz Rendl,et al.  A computational study and survey of methods for the single-row facility layout problem , 2013, Comput. Optim. Appl..

[36]  David Harel,et al.  A Multi-scale Algorithm for the Linear Arrangement Problem , 2002, WG.

[37]  Christoph Buchheim,et al.  Exact Algorithms for the Quadratic Linear Ordering Problem , 2010, INFORMS J. Comput..

[38]  A. Alfa,et al.  Experimental analysis of simulated annealing based algorithms for the layout problem , 1992 .

[39]  Franz Rendl,et al.  Semidefinite relaxations of ordering problems , 2013, Math. Program..

[40]  Anthony Vannelli,et al.  Computing Globally Optimal Solutions for Single-Row Layout Problems Using Semidefinite Programming and Cutting Planes , 2008, INFORMS J. Comput..

[41]  K. Ravi Kumar,et al.  A heuristic procedure for the single-row facility layout problem , 1995 .

[42]  L. H. Harper Optimal Assignments of Numbers to Vertices , 1964 .

[43]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[44]  Donald L. Adolphson,et al.  Single Machine Job Sequencing with Precedence Constraints , 1977, SIAM J. Comput..

[45]  Allan S. Carrie,et al.  A design technique for the layout of multi-product flowlines , 1986 .

[46]  Editors , 1986, Brain Research Bulletin.

[47]  M. Held,et al.  Finite-State Processes and Dynamic Programming , 1967 .

[48]  Russell D. Meller,et al.  The facility layout problem: Recent and emerging trends and perspectives , 1996 .

[49]  Bhaba R. Sarker,et al.  Directional decomposition heuristic for a linear machine-cell location problem , 2003, Eur. J. Oper. Res..

[50]  S. Sahni,et al.  Optional linear arrangement of circuit components , 1987 .

[51]  J. Y. Wong,et al.  On Solving A One-Dimensional Space Allocation Problem With Integer Programming , 1976 .

[52]  José Rui Figueira,et al.  Single row facility layout problem using a permutation-based genetic algorithm , 2011, Eur. J. Oper. Res..

[53]  Qi Wang,et al.  A new heuristic for the linear placement problem , 1991, Comput. Oper. Res..

[54]  Bhaba R. Sarker,et al.  Locating cells with bottleneck machines in cellular manufacturing systems , 2002 .

[55]  Donald M. Simmons One-Dimensional Space Allocation: An Ordering Algorithm , 1969, Oper. Res..

[56]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[57]  Gerhard Reinelt,et al.  Optimal linear arrangements using betweenness variables , 2011, Math. Program. Comput..

[58]  We-Min Chow,et al.  An Analysis of Automated Storage and Retrieval Systems in Manufacturing Assembly Lines , 1986 .

[59]  İ. K. Altinel *,et al.  Design of unidirectional cyclic layouts , 2005 .

[60]  Markus Chimani,et al.  Exact Approaches to Multilevel Vertical Orderings , 2013, INFORMS J. Comput..

[61]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[62]  David S. Johnson,et al.  Some simplified NP-complete problems , 1974, STOC '74.

[63]  André R. S. Amaral A new lower bound for the single row facility layout problem , 2009, Discret. Appl. Math..

[64]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[65]  Gang Yu,et al.  Optimal algorithms for row layout problems in automated manufacturing systems , 1995 .

[66]  Gintaras Palubeckis,et al.  A branch-and-bound algorithm for the single-row equidistant facility layout problem , 2012, OR Spectr..

[67]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[68]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[69]  J. Lasserre,et al.  Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .

[70]  Jin-Kao Hao,et al.  An effective two-stage simulated annealing algorithm for the minimum linear arrangement problem , 2008, Comput. Oper. Res..

[71]  T. Koopmans,et al.  Assignment Problems and the Location of Economic Activities , 1957 .

[72]  Donald M. Simmons Technical Note - A Further Note on One-Dimensional Space Allocation , 1971, Oper. Res..

[73]  Mohammad Taghi Hajiaghayi,et al.  L22 Spreading Metrics for Vertex Ordering Problems , 2006, SODA.

[74]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[75]  L. H. Harper Optimal numberings and isoperimetric problems on graphs , 1966 .

[76]  S. Heragu,et al.  Efficient models for the facility layout problem , 1991 .

[77]  Miguel F. Anjos,et al.  Provably near-optimal solutions for very large single-row facility layout problems , 2009, Optim. Methods Softw..

[78]  Maurice Queyranne,et al.  On the One-Dimensional Space Allocation Problem , 1981, Oper. Res..

[79]  Junfang Yu,et al.  Machine -Cell Location Problems for Multiproduct Flowlines. , 1999 .

[80]  Philipp Hungerländer,et al.  A Semidefinite Optimization Approach to Space-Free Multi-Row Facility Layout , 2012 .

[81]  Yi Xu,et al.  Designing multi-product lines: job routing in cellular manufacturing systems , 2000 .

[82]  James R. Lee,et al.  An improved approximation ratio for the minimum linear arrangement problem , 2007, Inf. Process. Lett..

[83]  R. Ravi,et al.  Ordering Problems Approximated: Single-Processor Scheduling and Interval Graph Completion , 1991, ICALP.

[84]  Laurian M. Chirica,et al.  The entity-relationship model: toward a unified view of data , 1975, SIGF.

[85]  Chris Gane,et al.  Structured Systems Analysis: Tools and Techniques , 1977 .