An efficient cost-sharing mechanism for the prize-collecting Steiner forest problem

In an instance of the <i>prize-collecting Steiner forest</i> problem (PCSF) we are given an undirected graph <i>G</i> = (<i>V, E</i>), non-negative edge-costs <i>c</i>(<i>e</i>) for all <i>e</i> ε <i>E</i>, terminal pairs <i>R</i> = {(<i>s<inf>i</inf></i>, <i>t<inf>i</inf></i>)}1≤<i>i</i>≤<i>k</i>, and penalties π<inf>1</inf>,...,π<i><inf>k</inf></i>. A feasible solution (<i>F, Q</i>) consists of a forest <i>F</i> and a subset <i>Q</i> of terminal pairs such that for all (<i>s<inf>i</inf></i>, <i>t<inf>i</inf></i>) ε <i>R</i> either <i>s<inf>i</inf></i>, <i>t<inf>i</inf></i> are connected by <i>F</i> or (<i>s<inf>i</inf></i>, <i>t<inf>i</inf></i>) ε <i>Q</i>. The objective is to compute a feasible solution of minimum cost <i>c</i>(<i>F</i>) + π (<i>Q</i>). A game-theoretic version of the above problem has <i>k</i> players, one for each terminal-pair in <i>R</i>. Player <i>i's</i> ultimate goal is to connect <i>s<inf>i</inf></i> and <i>t<inf>i</inf></i>, and the player derives a privately held <i>utility u<inf>i</inf></i> ≥ 0 from being connected. A service provider can connect the terminals <i>s<inf>i</inf></i> and <i>t<inf>i</inf></i> of player <i>i</i> in two ways: (1) by buying the edges of an <i>s<inf>i</inf></i>, <i>t<inf>i</inf></i>-path in <i>G</i>, or (2) by buying an alternate connection between <i>s<inf>i</inf></i> and <i>t<inf>i</inf></i> (maybe from some other provider) at a cost of π<i><inf>i</inf></i>. In this paper, we present a simple 3-budget-balanced and group-strategyproof mechanism for the above problem. We also show that our mechanism computes client sets whose social cost is at most <i>O</i>(log<sup>2</sup> <i>k</i>) times the minimum social cost of any player set. This matches a lower-bound that was recently given by Roughgarden and Sundararajan (STOC '06).

[1]  Jochen Könemann,et al.  Group-Strategyproof Mechanisms for Network Design Games via Primal-Dual Algorithms , 2008 .

[2]  Yair Bartal,et al.  Probabilistic approximation of metric spaces and its algorithmic applications , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Tim Roughgarden,et al.  New trade-offs in cost-sharing mechanisms , 2006, STOC '06.

[4]  Nicole Immorlica,et al.  Limitations of cross-monotonic cost sharing schemes , 2005, SODA '05.

[5]  Tim Roughgarden,et al.  Optimal Cost-Sharing Mechanisms for Steiner Forest Problems , 2006, WINE.

[6]  Jochen Könemann,et al.  A group-strategyproof mechanism for Steiner forests , 2005, SODA '05.

[7]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.

[8]  Joan Feigenbaum,et al.  Approximation and collusion in multicast cost sharing , 2003, EC '03.

[9]  Vijay V. Vazirani,et al.  Applications of approximation algorithms to cooperative games , 2001, STOC '01.

[10]  H. Moulin,et al.  Strategyproof sharing of submodular costs:budget balance versus efficiency , 2001 .

[11]  Stefano Leonardi,et al.  Cross-monotonic cost sharing methods for connected facility location games , 2004, Theor. Comput. Sci..

[12]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[13]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[14]  H. Moulin Incremental cost sharing: Characterization by coalition strategy-proofness , 1999 .

[15]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[16]  David P. Williamson,et al.  A general approximation technique for constrained forest problems , 1992, SODA '92.

[17]  Jerry R. Green,et al.  Partial Equilibrium Approach to the Free-Rider Problem , 1976 .

[18]  Aravind Srinivasan,et al.  Cost-Sharing Mechanisms for Network Design , 2007, Algorithmica.

[19]  Joan Feigenbaum,et al.  Hardness Results for Multicast Cost Sharing , 2002, FSTTCS.

[20]  David P. Williamson,et al.  A note on the prize collecting traveling salesman problem , 1993, Math. Program..

[21]  Joan Feigenbaum,et al.  Sharing the Cost of Multicast Transmissions , 2001, J. Comput. Syst. Sci..

[22]  Jochen Könemann,et al.  From Primal-Dual to Cost Shares and Back: A Stronger LP Relaxation for the Steiner Forest Problem , 2005, ICALP.

[23]  Mohammad Taghi Hajiaghayi,et al.  The prize-collecting generalized steiner tree problem via a new approach of primal-dual schema , 2006, SODA '06.

[24]  Stefano Leonardi,et al.  Cross-monotonic cost-sharing methods for connected facility location games , 2004, EC '04.

[25]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.