Design of LDPC Codes Robust to Noisy Message-Passing Decoding

We address noisy message-passing decoding of lowdensity parity-check (LDPC) codes over additive white Gaussian noise channels. Message-passing decoders in which certain processing units iteratively exchange messages are common for decoding LDPC codes. The exchanged messages are in general subject to internal noise in hardware implementation of these decoders. We model the internal decoder noise as additive white Gaussian noise (AWGN) degrading exchanged messages. Using Gaussian approximation of the exchanged messages, we perform a two-dimensional density evolution analysis for the noisy LDPC decoder. This makes it possible to track both the mean, and the variance of the exchanged message densities, and hence, to quantify the threshold of the LDPC code in the presence of internal decoder noise. The numerical and simulation results are presented that quantify the performance loss due to the internal decoder noise. To partially compensate this performance loss, we propose a simple method, based on EXIT chart analysis, to design robust irregular LDPC codes. The simulation results indicate that the designed codes can indeed compensate part of the performance loss due to the internal decoder noise.

[1]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[2]  Lara Dolecek,et al.  Optimal Design of a Gallager B Noisy Decoder for Irregular LDPC Codes , 2012, IEEE Communications Letters.

[3]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[4]  Lara Dolecek,et al.  Quantization Effects in Low-Density Parity-Check Decoders , 2007, 2007 IEEE International Conference on Communications.

[5]  Hans-Andrea Loeliger,et al.  Probability propagation and decoding in analog VLSI , 2001, IEEE Trans. Inf. Theory.

[6]  Lav R. Varshney,et al.  Performance of LDPC Codes Under Faulty Iterative Decoding , 2008, IEEE Transactions on Information Theory.

[7]  Sarah J. Johnson,et al.  Iterative Error Correction: Turbo, Low-Density Parity-Check and Repeat-Accumulate Codes , 2009 .

[8]  Joachim Hagenauer,et al.  The exit chart - introduction to extrinsic information transfer in iterative processing , 2004, 2004 12th European Signal Processing Conference.

[9]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[10]  Lara Dolecek,et al.  Gallager B LDPC Decoder with Transient and permanent errors , 2013, 2013 IEEE International Symposium on Information Theory.

[11]  Amir H. Banihashemi,et al.  Performance of Belief Propagation for Decoding LDPC Codes in the Presence of Channel Estimation Error , 2007, IEEE Transactions on Communications.

[12]  Masoud Ardakani,et al.  A more accurate one-dimensional analysis and design of irregular LDPC codes , 2004, IEEE Transactions on Communications.

[13]  Stephan ten Brink,et al.  Extrinsic information transfer functions: model and erasure channel properties , 2004, IEEE Transactions on Information Theory.

[14]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[15]  Khalid Sayood,et al.  Introduction to Data Compression , 1996 .

[16]  R.R. Lopes,et al.  Design, Simulation and Hardware Implementation of a Digital Television System: LDPC channel coding , 2006, 2006 IEEE Ninth International Symposium on Spread Spectrum Techniques and Applications.

[17]  T. Moon Error Correction Coding: Mathematical Methods and Algorithms , 2005 .

[18]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[19]  A. R. Hammons,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[20]  Joachim Hagenauer,et al.  The analog decoder , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[21]  Hesham El Gamal,et al.  Analyzing the turbo decoder using the Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[22]  Mustafa Eroz,et al.  DVB‐S2 low density parity check codes with near Shannon limit performance , 2004, Int. J. Satell. Commun. Netw..

[23]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[24]  David L. Neuhoff,et al.  Asymptotic distribution of the errors in scalar and vector quantizers , 1996, IEEE Trans. Inf. Theory.

[25]  Farshad Lahouti,et al.  Performance Analysis of Noisy Message-Passing Decoding of Low-Density Parity-Check Codes , 2010 .

[26]  Lara Dolecek,et al.  Gallager B Decoder on Noisy Hardware , 2013, IEEE Transactions on Communications.

[27]  Lara Dolecek,et al.  Belief Propagation Algorithms on Noisy Hardware , 2015, IEEE Transactions on Communications.

[28]  Erold W. Hinds,et al.  Error-correction coding , 1996 .

[29]  Stephan ten Brink,et al.  Design of low-density parity-check codes for modulation and detection , 2004, IEEE Transactions on Communications.

[30]  Ieee Microwave Theory,et al.  Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems — Amendment for Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands , 2003 .

[31]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[32]  Amos Lapidoth,et al.  Channels That Heat Up , 2008, IEEE Transactions on Information Theory.

[33]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .