Precisely and accurately localizing single emitters in fluorescence microscopy

Methods based on single-molecule localization and photophysics have brought nanoscale imaging with visible light into reach. This has enabled single-particle tracking applications for studying the dynamics of molecules and nanoparticles and contributed to the recent revolution in super-resolution localization microscopy techniques. Crucial to the optimization of such methods are the precision and accuracy with which single fluorophores and nanoparticles can be localized. We present a lucid synthesis of the developments on this localization precision and accuracy and their practical implications in order to guide the increasing number of researchers using single-particle tracking and super-resolution localization microscopy.

[1]  Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[2]  G. D. Francia Resolving Power and Information , 1955 .

[3]  E. Wolf,et al.  Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[4]  C W McCutchen,et al.  Superresolution in microscopy and the Abbe resolution limit. , 1967, Journal of the Optical Society of America.

[5]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[6]  A. Cramer-Rao lower bounds on the performance of charge-coupled-device optical position estimators , 1985 .

[7]  N. Bobroff Position measurement with a resolution and noise‐limited instrument , 1986 .

[8]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[9]  H. P. Kao,et al.  Tracking of single fluorescent particles in three dimensions: use of cylindrical optics to encode particle position. , 1994, Biophysical journal.

[10]  Peter Török,et al.  Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation , 1995 .

[11]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[12]  K. Jacobson,et al.  Single-particle tracking: applications to membrane dynamics. , 1997, Annual review of biophysics and biomolecular structure.

[13]  Zhan-guo Wang,et al.  Absorption and luminescence of the surface states in ZnS nanoparticles , 1997 .

[14]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[15]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[16]  Robert M. Dickson,et al.  Imaging Three-Dimensional Single Molecule Orientations , 1999 .

[17]  D. P. Fromm,et al.  Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior , 2000 .

[18]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[19]  R. Tsien,et al.  Partitioning of Lipid-Modified Monomeric GFPs into Membrane Microdomains of Live Cells , 2002, Science.

[20]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[21]  J. Hynecek,et al.  Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs , 2003 .

[22]  Alexandr Jonás,et al.  Three-dimensional tracking of fluorescent nanoparticles with subnanometer precision by use of off-focus imaging. , 2003, Optics letters.

[23]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[24]  M. Gustafsson,et al.  Phase‐retrieved pupil functions in wide‐field fluorescence microscopy , 2004, Journal of microscopy.

[25]  S. Ram,et al.  Localization accuracy in single-molecule microscopy. , 2004, Biophysical journal.

[26]  S. Ram,et al.  Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions , 2004, IEEE Transactions on NanoBioscience.

[27]  Lord Rayleigh,et al.  On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .

[28]  P. Doyle,et al.  Static and dynamic errors in particle tracking microrheology. , 2005, Biophysical journal.

[29]  M. Unser,et al.  A maximum-likelihood formalism for sub-resolution axial localization of fluorescent nanoparticles. , 2005, Optics express.

[30]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[31]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[32]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[33]  S. Hell,et al.  Comparison of I5M and 4Pi‐microscopy , 2006, Journal of microscopy.

[34]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[35]  S. Ram,et al.  Beyond Rayleigh's criterion: a resolution measure with application to single-molecule microscopy. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Sripad Ram,et al.  A Stochastic Analysis of Performance Limits for Optical Microscopes , 2006, Multidimens. Syst. Signal Process..

[37]  Paul R Selvin,et al.  Polarization effect on position accuracy of fluorophore localization. , 2006, Optics express.

[38]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[39]  H. Balci,et al.  Three-dimensional particle tracking via bifocal imaging. , 2007, Nano letters.

[40]  Enrico Gratton,et al.  Exploring dynamics in living cells by tracking single particles , 2007, Cell Biochemistry and Biophysics.

[41]  S. Hess,et al.  Fluorescence Intermittency Limits Brightness in CdSe/ZnS Nanoparticles Quantified by Fluorescence Correlation Spectroscopy , 2007 .

[42]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[43]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[44]  S. Hell Microscopy and its focal switch , 2008, Nature Methods.

[45]  Alexander Egner,et al.  Isotropic 3D Nanoscopy based on single emitter switching. , 2008, Optics express.

[46]  R. Piestun,et al.  Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. , 2008, Optics express.

[47]  X. Zhuang,et al.  Whole cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution , 2008, Nature Methods.

[48]  Travis J Gould,et al.  Nanoscale imaging of molecular positions and anisotropies , 2008, Nature Methods.

[49]  J Alexander Liddle,et al.  Fast, bias-free algorithm for tracking single particles with variable size and shape. , 2008, Optics express.

[50]  M. Tokunaga,et al.  Highly inclined thin illumination enables clear single-molecule imaging in cells , 2008, Nature Methods.

[51]  J. Yajima,et al.  A torque component present in mitotic kinesin Eg5 revealed by three-dimensional tracking , 2008, Nature Structural &Molecular Biology.

[52]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[53]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[54]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[55]  C. Rao,et al.  Accuracy analysis of centroid calculated by a modified center detection algorithm for Shack–Hartmann wavefront sensor , 2008 .

[56]  Marjeta Urh,et al.  HaloTag: a novel protein labeling technology for cell imaging and protein analysis. , 2008, ACS chemical biology.

[57]  Gerhard J Schütz,et al.  Tracking single molecules in the live cell plasma membrane-Do's and Don't's. , 2008, Methods.

[58]  J. Shaevitz,et al.  Effect of aberration on height calibration in three-dimensional localization-based microscopy and particle tracking. , 2009, Applied optics.

[59]  J Alexander Liddle,et al.  3D particle trajectories observed by orthogonal tracking microscopy. , 2009, ACS nano.

[60]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[61]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[62]  Yale E Goldman,et al.  Parallax: high accuracy three-dimensional single molecule tracking using split images. , 2009, Nano letters.

[63]  Igor L. Medintz,et al.  Delivering quantum dots into cells: strategies, progress and remaining issues , 2009, Analytical and bioanalytical chemistry.

[64]  Rafael Piestun,et al.  Three-dimensional localization with nanometer accuracy using a detector-limited double-helix point spread function system , 2009 .

[65]  Michael Unser,et al.  Super-resolution orientation estimation and localization of fluorescent dipoles using 3-D steerable filters. , 2009, Optics express.

[66]  Ralf Jungmann,et al.  DNA origami as a nanoscopic ruler for super-resolution microscopy. , 2009, Angewandte Chemie.

[67]  Jerry Chao,et al.  Quantitative study of single molecule location estimation techniques. , 2009, Optics express.

[68]  Glen L. Beane,et al.  Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy. , 2009, Optics express.

[69]  S. Hess,et al.  Imaging biological structures with fluorescence photoactivation localization microscopy , 2009, Nature Protocols.

[70]  J. Lippincott-Schwartz,et al.  Photoactivatable fluorescent proteins for diffraction-limited and super-resolution imaging. , 2009, Trends in cell biology.

[71]  S. Zeng,et al.  Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. , 2010, Journal of biomedical optics.

[72]  Matthew D. Lew,et al.  Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. , 2010, Applied physics letters.

[73]  Rafael Piestun,et al.  Performance limits on three-dimensional particle localization in photon-limited microscopy. , 2010, Optics letters.

[74]  S. Stallinga,et al.  Accuracy of the gaussian point spread function model in 2D localization microscopy. , 2010, Optics express.

[75]  E. Gouaux,et al.  Dynamic superresolution imaging of endogenous proteins on living cells at ultra-high density. , 2010, Biophysical journal.

[76]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[77]  X. Michalet Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. , 2010 .

[78]  H. Flyvbjerg,et al.  Optimized localization-analysis for single-molecule tracking and super-resolution microscopy , 2010, Nature Methods.

[79]  Hui Jia,et al.  Minimum variance unbiased subpixel centroid estimation of point image limited by photon shot noise. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[80]  Ulrich Kubitscheck,et al.  Light Sheet Microscopy for Single Molecule Tracking in Living Tissue , 2010, PloS one.

[81]  W. E. Moerner,et al.  Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. , 2010, Nano letters.

[82]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[83]  Jianyong Tang,et al.  Near-isotropic 3D optical nanoscopy with photon-limited chromophores , 2010, Proceedings of the National Academy of Sciences.

[84]  Matthew D Lew,et al.  Corkscrew point spread function for far-field three-dimensional nanoscale localization of pointlike objects. , 2011, Optics letters.

[85]  Thorsten Staudt,et al.  Molecular orientation affects localization accuracy in superresolution far-field fluorescence microscopy. , 2011, Nano letters.

[86]  Sean Quirin,et al.  Optimal 3D single-molecule localization for superresolution microscopy with aberrations and engineered point spread functions , 2011, Proceedings of the National Academy of Sciences.

[87]  Andrew G. York,et al.  Confined Activation and Subdiffractive Localization Enables Whole-Cell PALM with Genetically Expressed Probes , 2011, Nature Methods.

[88]  X. Zhuang,et al.  Fast three-dimensional super-resolution imaging of live cells , 2011, Nature Methods.

[89]  M. Heilemann,et al.  Direct stochastic optical reconstruction microscopy with standard fluorescent probes , 2011, Nature Protocols.

[90]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[91]  S. Hell,et al.  Two-color nanoscopy of three-dimensional volumes by 4Pi detection of stochastically switched fluorophores , 2011, Nature Methods.

[92]  C. Soeller,et al.  Three-dimensional sub-100 nm super-resolution imaging of biological samples using a phase ramp in the objective pupil , 2011 .

[93]  Hongqiang Ma,et al.  Localization-based super-resolution microscopy with an sCMOS camera. , 2011, Optics express.

[94]  A. Diaspro,et al.  Live-cell 3D super-resolution imaging in thick biological samples , 2011, Nature Methods.

[95]  Steven P. Callahan,et al.  Sample drift correction in 3D fluorescence photoactivation localization microscopy , 2011 .

[96]  Zhiping Lin,et al.  Limit of the accuracy of parameter estimation for moving single molecules. , 2012 .

[97]  Andrew D Ellington,et al.  Aptamers as potential tools for super-resolution microscopy , 2012, Nature Methods.

[98]  Joerg Bewersdorf,et al.  Optical nanoscopy: from acquisition to analysis. , 2012, Annual review of biomedical engineering.

[99]  Mike Heilemann,et al.  Super-resolution fluorescence imaging of chromosomal DNA. , 2012, Journal of structural biology.

[100]  M. Schnitzer,et al.  Unified resolution bounds for conventional and stochastic localization fluorescence microscopy. , 2012, Physical review letters.

[101]  Axel Munk,et al.  Drift estimation for single marker switching based imaging schemes. , 2012, Optics express.

[102]  Paul R. Selvin,et al.  Using fixed fiduciary markers for stage drift correction , 2012, Optics express.

[103]  H. Ewers,et al.  A simple, versatile method for GFP-based super-resolution microscopy via nanobodies , 2012, Nature Methods.

[104]  M. Ueda,et al.  Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. , 2012, Biophysical journal.

[105]  S. Stallinga,et al.  Position and orientation estimation of fixed dipole emitters using an effective Hermite point spread function model. , 2012, Optics express.

[106]  Ju Lu,et al.  Estimation theoretic measure of resolution for stochastic localization microscopy. , 2012, Physical review letters.

[107]  G. C. Rogers,et al.  Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization , 2012, Nature Cell Biology.

[108]  X. Zhuang,et al.  Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging , 2012 .

[109]  Matthew D Lew,et al.  Simultaneous, accurate measurement of the 3D position and orientation of single molecules , 2012, Proceedings of the National Academy of Sciences.

[110]  Robert Eugene Blankenship,et al.  Single-image axial localization precision analysis for individual fluorophores , 2012, Optics express.

[111]  K. Neyts,et al.  The influence of movement on the localization precision of sub‐resolution particles in fluorescence microscopy , 2012, Journal of biophotonics.

[112]  Jerry Chao,et al.  Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices , 2012, Multidimens. Syst. Signal Process..

[113]  Sjoerd Stallinga,et al.  Measuring image resolution in optical nanoscopy , 2013, Nature Methods.

[114]  Tobias M. P. Hartwich,et al.  Video-rate nanoscopy using sCMOS camera- specific single-molecule localization algorithms , 2013 .

[115]  M. Beck,et al.  Fourier ring correlation as a resolution criterion for super-resolution microscopy. , 2013, Journal of structural biology.

[116]  Michael W. Davidson,et al.  Video-rate nanoscopy enabled by sCMOS camera-specific single-molecule localization algorithms , 2013, Nature Methods.

[117]  Shimon Weiss,et al.  Labeling Cytosolic Targets in Live Cells with Blinking Probes. , 2013, The journal of physical chemistry letters.

[118]  M Unser,et al.  3‐D PSF fitting for fluorescence microscopy: implementation and localization application , 2013, Journal of microscopy.

[119]  Matthew D Lew,et al.  Rotational mobility of single molecules affects localization accuracy in super-resolution fluorescence microscopy. , 2013, Nano letters.

[120]  A. Small,et al.  Fluorophore localization algorithms for super-resolution microscopy , 2014, Nature Methods.