Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks?

The incredible growth of the Internet and data transmission are pushing the bandwidth requirements for fiber networks and expansion of metro and local area networks at an unprecedented pace. One of the key requirements for a great expansion of optical networks is low cost, high-performance tunable lasers that are easily packaged and coupled to fiber. The paper reviews the terrain of both materials and device technologies that are currently driving this optical revolution and speculates on the future directions and if a single, all encompassing technology, the "Holy Grail," might be realized by any of the contenders.

[1]  Diana L. Huffaker,et al.  Quantum dot vertical-cavity surface-emitting laser with a dielectric aperture , 1997 .

[2]  Larry A. Coldren,et al.  Electrically-pumped, single-epitaxial VCSELs at 1.55 /spl mu/m with Sb-based mirrors , 1999 .

[3]  T. Kikugawa,et al.  A DBR laser employing passive-section heaters, with 10.8 nm tuning range and 1.6 MHz linewidth , 1993, IEEE Photonics Technology Letters.

[4]  V. Jayaraman,et al.  Extended tuning range in sampled grating DBR lasers , 1993, IEEE Photonics Technology Letters.

[5]  Shunichi Sato,et al.  Metalorganic chemical vapor deposition of GaInNAs lattice matched to GaAs for long-wavelength laser diodes , 1998 .

[6]  M. Fischer,et al.  Room-temperature operation of GaInAsN/GaAs laser diodes in the 1.5 /spl mu/m range , 2000, Conference Digest. 2000 IEEE 17th International Semiconductor Laser Conference. (Cat. No.00CH37092).

[7]  Chung-En Zah,et al.  Continuous wavelength tuning of two-electrode vertical-cavity surface-emitting lasers , 1991 .

[8]  Kent D. Choquette,et al.  Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um , 2000 .

[9]  Diana L. Huffaker,et al.  Electroluminescence efficiency of 1.3 μm wavelength InGaAs/GaAs quantum dots , 1998 .

[10]  K. Iga,et al.  GaInAsP/InP Surface Emitting Injection Lasers , 1979 .

[11]  S. G. Spruytte,et al.  Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy , 2001 .

[12]  D. Deppe,et al.  Low-threshold oxide-confined 1.3-μm quantum-dot laser , 2000, IEEE Photonics Technology Letters.

[13]  C. Chang-Hasnain,et al.  High-performance 1.6 µm single-epitaxy top-emitting VCSEL , 2000, CLEO 2000.

[14]  O. Blum,et al.  Characteristics of GaAsSb single-quantum-well-lasers emitting near 1.3 μm , 2000, IEEE Photonics Technology Letters.

[15]  Martin D. Dawson,et al.  Electronic states and band alignment in GalnNAs/GaAs quantum-well structures with low nitrogen content , 2000 .

[16]  Joel Jacquet,et al.  GaAlAs/GaAs metamorphic Bragg mirror for long wavelength VCSELs , 1998 .

[17]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[18]  T. Ninomiya,et al.  Continuous-wave operation up to 36/spl deg/C of 1.3-μm GaInAsP-InP vertical-cavity surface-emitting lasers , 1997, IEEE Photonics Technology Letters.

[19]  Larry A. Coldren,et al.  Investigation of tunable single frequency diode lasers for sensor applications , 1988 .

[20]  S. Nilsson,et al.  74 nm wavelength tuning range of an InGaAsP/InP vertical grating assisted codirectional coupler laser with rear sampled grating reflector , 1993, IEEE Photonics Technology Letters.

[21]  S. G. Spruytte,et al.  Electrical depth profile of p-type GaAs/Ga(As, N)/GaAs heterostructures determined by capacitance–voltage measurements , 2000 .

[22]  H. Ishii,et al.  Broad-range wavelength tuning in DBR lasers with super structure grating (SSG) , 1993, IEEE Photonics Technology Letters.

[23]  Diana L. Huffaker,et al.  Very low threshold oxide-confined 1.3 /spl mu/m GaAs-based quantum dot laser , 2000, CLEO 2000.

[24]  Daniil A. Livshits,et al.  High power CW operation of InGaAsN lasers at 1.3 [micro sign]m , 1999 .

[25]  J. Laskar,et al.  In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties , 1999 .

[26]  M. Kicherer,et al.  2.5-Gb/s data transmission over 10-km standard single-mode fiber using InGaAs VCSELs at 1.13-μm emission wavelength , 2000, IEEE Photonics Technology Letters.

[27]  John E. Bowers,et al.  Design and analysis of double-fused 1.55-/spl mu/m vertical-cavity lasers , 1997 .

[28]  J. Harris,et al.  Micromachined widely tunable vertical cavity laser diodes , 1998 .

[29]  Takeshi Kitatani,et al.  GaInNAs: A Novel Material for Long-Wavelength-Range Laser Diodes with Excellent High-Temperature Performance , 1996 .

[30]  Kent D. Choquette,et al.  GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates , 2000 .

[31]  H. Temkin,et al.  Nitrogen incorporation kinetics in metalorganic molecular beam epitaxy of GaAsN , 1999 .

[32]  Kenichi Iga,et al.  Low threshold current density operation of GaInNAs quantum well lasers grown by metalorganic chemical vapour deposition , 2000 .

[33]  J. Harris,et al.  Wide and continuous wavelength tuning in a vertical‐cavity surface‐emitting laser using a micromachined deformable‐membrane mirror , 1996 .

[34]  C. Chang-Hasnain,et al.  High performance and novel effects of micromechanical tunable vertical-cavity lasers , 1997 .

[35]  S. G. Spruytte,et al.  Low-threshold oxide-confined GaInNAs long wavelength vertical cavity lasers , 2000, IEEE Photonics Technology Letters.

[36]  C. Tu,et al.  GaInNAs/GaAs multiple quantum wells grown by gas-source molecular beam epitaxy , 1998 .

[37]  Michael C. Larson,et al.  1200 nm GaAs-based vertical cavity lasers employing GaInNAs multiquantum well active regions , 2000 .

[38]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[39]  Kent D. Choquette,et al.  Vertical-cavity surface emitting lasers: moving from research to manufacturing , 1997, Proc. IEEE.

[40]  James S. Harris,et al.  Incorporation of nitrogen in nitride-arsenides: Origin of improved luminescence efficiency after anneal , 2001 .

[41]  James S. Harris,et al.  SIMULTANEOUS OPTIMIZATION OF MEMBRANE REFLECTANCE AND TUNING VOLTAGE FOR TUNABLE VERTICAL CAVITY LASERS , 1998 .

[42]  D. Thompson,et al.  Group V incorporation in InGaAsP grown on InP by gas source molecular beam epitaxy , 1996 .

[43]  A. R. Kovsh,et al.  Progress in Quantum Dot Lasers: 1100 nm, 1300 nm, and High Power Applications , 2000 .

[44]  M. Kuznetsov,et al.  High-power (>0.5-W CW) diode-pumped vertical-external-cavity surface-emitting semiconductor lasers with circular TEM/sub 00/ beams , 1997, IEEE Photonics Technology Letters.

[45]  J. Harris,et al.  Low threshold continuously tunable vertical-cavity surface-emitting lasers with 19.1 nm wavelength range , 1997 .

[46]  Modeling of MEMS tunable optoelectronic device mirror , 2000, 2000 IEEE/LEOS International Conference on Optical MEMS (Cat. No.00EX399).

[47]  Mikhail V. Maximov,et al.  Low threshold, large To injection laser emission from (InGa)As quantum dots , 1994 .

[48]  Wolfgang Stolz,et al.  Reduced threshold current densities of (GaIn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38 /spl mu/m , 1999 .

[49]  Jiangtao Zhou,et al.  2 mW CW single-mode operation of a tunable 1550 nm vertical cavity surface emitting laser with 50 nm tuning range , 1999 .

[50]  Ted D. Lowes,et al.  Uniform threshold current, continuous-wave, singlemode 1300 nm vertical cavity lasers from 0 to 70°C , 1998 .

[51]  N. Ledentsov,et al.  Control of the emission wavelength of self-organized InGaAs quantum dots: main achievements and present status , 1999 .

[52]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[53]  Charles W. Tu,et al.  Self-assembled GaInNAs quantum dots for 1.3 and 1.55 μm emission on GaAs , 2000 .

[54]  L. Coldren,et al.  Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings , 1993 .

[55]  S. G. Spruytte,et al.  Molecular beam epitaxial growth of group III-nitride-arsenides for long wavelength optoelectronics , 2000, 2000 IEEE International Symposium on Compound Semiconductors. Proceedings of the IEEE Twenty-Seventh International Symposium on Compound Semiconductors (Cat. No.00TH8498).