Three-step docking by WIPI2, ATG16L1 and ATG3 delivers LC3 to the phagophore

The covalent attachment of ubiquitin-like LC3 proteins prepares the autophagic membrane for cargo recruitment. We resolve key steps in LC3 lipidation by combining molecular dynamics simulations and experiments in vitro and in cellulo. We show how the E3-like ligase ATG12– ATG5-ATG16L1 in complex with the E2-like conjugase ATG3 docks LC3 onto the membrane in three steps by (1) the PI(3)P effector protein WIPI2, (2) helix α2 of ATG16L1, and (3) a membrane-interacting surface of ATG3. Phosphatidylethanolamine (PE) lipids concentrate in a region around the thioester bond between ATG3 and LC3, highlighting residues with a possible role in the catalytic transfer of LC3 to PE, including two conserved histidines. In a near-complete pathway from the initial membrane recruitment to the LC3 lipidation reaction, the three-step targeting of the ATG12–ATG5-ATG16L1 machinery establishes a high level of regulatory control.

[1]  F. Hughson,et al.  The machinery of vesicle fusion. , 2023, Current opinion in cell biology.

[2]  Yuchao Zhang,et al.  ATG16L1 adopts a dual–binding site mode to interact with WIPI2b in autophagy , 2023, Science advances.

[3]  Taki Nishimura,et al.  Unique amphipathic α helix drives membrane insertion and enzymatic activity of ATG3 , 2023, bioRxiv.

[4]  Van Bui,et al.  Translating Membrane Geometry into Protein Function: Multifaceted Membrane Interactions of Human Atg3 Promote LC3-Phosphatidylethanolamine Conjugation during Autophagy , 2022, bioRxiv.

[5]  R. Youle,et al.  The mechanisms and roles of selective autophagy in mammals , 2022, Nature Reviews Molecular Cell Biology.

[6]  G. Hummer,et al.  Membrane curvature sensing and stabilization by the autophagic LC3 lipidation machinery , 2022, bioRxiv.

[7]  N. Mizushima,et al.  A pulse-chasable reporter processing assay for mammalian autophagic flux with HaloTag , 2022, bioRxiv.

[8]  D. Hassabis,et al.  Protein complex prediction with AlphaFold-Multimer , 2021, bioRxiv.

[9]  A. Ballabio,et al.  Autophagy in major human diseases , 2021, The EMBO journal.

[10]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[11]  J. Hurley,et al.  Structural basis for membrane recruitment of ATG16L1 by WIPI2 in autophagy , 2021, bioRxiv.

[12]  P. Stansfeld,et al.  CG2AT2: an Enhanced Fragment-Based Approach for Serial Multi-scale Molecular Dynamics Simulations , 2021, bioRxiv.

[13]  Van Bui,et al.  An N-terminal conserved region in human Atg3 couples membrane curvature sensitivity to conjugase activity during autophagy , 2021, Nature Communications.

[14]  J. Hurley,et al.  Reconstitution of cargo-induced LC3 lipidation in mammalian selective autophagy , 2021, Science Advances.

[15]  Defa Li,et al.  Lipids and membrane-associated proteins in autophagy , 2020, Protein & Cell.

[16]  B. Schulman,et al.  NEDD8 and ubiquitin ligation by cullin-RING E3 ligases. , 2020, Current opinion in structural biology.

[17]  Oliver Hofnagel,et al.  RAB33B recruits the ATG16L1 complex to the phagophore via a noncanonical RAB binding protein , 2020, Autophagy.

[18]  P. Neumann,et al.  Crystal structure of the Rab33B/Atg16L1 effector complex , 2020, Scientific Reports.

[19]  Michael I. Wilson,et al.  Non-canonical autophagy drives alternative ATG8 conjugation to phosphatidylserine , 2020, bioRxiv.

[20]  J. Hurley,et al.  A PI3K-WIPI2 positive feedback loop allosterically activates LC3 lipidation in autophagy , 2019, bioRxiv.

[21]  N. Mizushima,et al.  Diverse Cellular Roles of Autophagy. , 2019, Annual review of cell and developmental biology.

[22]  D. Klionsky,et al.  A switch element in the autophagy E2 Atg3 mediates allosteric regulation across the lipidation cascade , 2019, Nature Communications.

[23]  Xiaogen Zhou,et al.  Assembling multidomain protein structures through analogous global structural alignments , 2019, Proceedings of the National Academy of Sciences.

[24]  W. Feng,et al.  Structural Conservation of the Two Phosphoinositide-Binding Sites in WIPI Proteins. , 2019, Journal of molecular biology.

[25]  T. Yoshimori,et al.  Distinct functions of ATG16L1 isoforms in membrane binding and LC3B lipidation in autophagy-related processes , 2019, Nature Cell Biology.

[26]  Torsten Schwede,et al.  SWISS-MODEL: homology modelling of protein structures and complexes , 2018, Nucleic Acids Res..

[27]  J. Harper,et al.  Building and decoding ubiquitin chains for mitophagy , 2018, Nature Reviews Molecular Cell Biology.

[28]  Derek N Woolfson,et al.  CCBuilder 2.0: Powerful and accessible coiled‐coil modeling , 2017, Protein science : a publication of the Protein Society.

[29]  J. Hurley,et al.  Mechanisms of Autophagy Initiation. , 2017, Annual review of biochemistry.

[30]  C. Lima,et al.  Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism , 2017, Chemical reviews.

[31]  Masato Koike,et al.  The ATG conjugation systems are important for degradation of the inner autophagosomal membrane , 2016, Science.

[32]  G. Ramm,et al.  Atg8 family LC3/GABARAP proteins are crucial for autophagosome–lysosome fusion but not autophagosome formation during PINK1/Parkin mitophagy and starvation , 2016, The Journal of cell biology.

[33]  B. L. de Groot,et al.  CHARMM36m: an improved force field for folded and intrinsically disordered proteins , 2016, Nature Methods.

[34]  Alexander D. MacKerell,et al.  CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field , 2015, Journal of chemical theory and computation.

[35]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[36]  Helgi I. Ingólfsson,et al.  Computational Lipidomics with insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. , 2015, Journal of chemical theory and computation.

[37]  R. Youle,et al.  The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease , 2015, Neuron.

[38]  P. Dönnes,et al.  WIPI proteins: essential PtdIns3P effectors at the nascent autophagosome , 2015, Journal of Cell Science.

[39]  Yoon Ki Kim,et al.  Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners , 2015, Autophagy.

[40]  Michael I. Wilson,et al.  WIPI2 Links LC3 Conjugation with PI3P, Autophagosome Formation, and Pathogen Clearance by Recruiting Atg12–5-16L1 , 2014, Molecular cell.

[41]  Rommie E. Amaro,et al.  LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry , 2014, PLoS Comput. Biol..

[42]  J. Bewersdorf,et al.  Lipidation of the LC3/GABARAP family of autophagy proteins relies upon a membrane curvature-sensing domain in Atg3 , 2014, Nature Cell Biology.

[43]  D. Klionsky,et al.  Identification of Atg3 as an intrinsically disordered polypeptide yields insights into the molecular dynamics of autophagy-related proteins in yeast , 2014, Autophagy.

[44]  D. Klionsky,et al.  Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins , 2014, Nature Structural &Molecular Biology.

[45]  G. Takaesu,et al.  Structural basis of ATG3 recognition by the autophagic ubiquitin-like protein ATG12 , 2013, Proceedings of the National Academy of Sciences.

[46]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[47]  T. Lamark,et al.  The LIR motif – crucial for selective autophagy , 2013, Journal of Cell Science.

[48]  F. Inagaki,et al.  Atg12–Atg5 conjugate enhances E2 activity of Atg3 by rearranging its catalytic site , 2013, Nature Structural &Molecular Biology.

[49]  F. Inagaki,et al.  Noncanonical recognition and UBL loading of distinct E2s by autophagy-essential Atg7 , 2012, Nature Structural &Molecular Biology.

[50]  G. Takaesu,et al.  Structure of the human ATG12~ATG5 conjugate required for LC3 lipidation in autophagy , 2012, Nature Structural &Molecular Biology.

[51]  D. Klionsky,et al.  Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7–Atg3 and Atg7–Atg10 structures , 2012, Nature Structural &Molecular Biology.

[52]  J. Hurley,et al.  Two-site recognition of phosphatidylinositol 3-phosphate by PROPPINs in autophagy. , 2012, Molecular cell.

[53]  M. Thumm,et al.  Structural and functional characterization of the two phosphoinositide binding sites of PROPPINs, a β-propeller protein family , 2012, Proceedings of the National Academy of Sciences.

[54]  Oliver Beckstein,et al.  MDAnalysis: A toolkit for the analysis of molecular dynamics simulations , 2011, J. Comput. Chem..

[55]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[56]  D. Rigden,et al.  Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation , 2010, Autophagy.

[57]  S. Akira,et al.  Differential Involvement of Atg16L1 in Crohn Disease and Canonical Autophagy , 2009, The Journal of Biological Chemistry.

[58]  T. Takao,et al.  The amino‐terminal region of Atg3 is essential for association with phosphatidylethanolamine in Atg8 lipidation , 2009, FEBS letters.

[59]  Y. Ohsumi,et al.  Physiological pH and Acidic Phospholipids Contribute to Substrate Specificity in Lipidation of Atg8* , 2008, Journal of Biological Chemistry.

[60]  Taehoon Kim,et al.  CHARMM‐GUI: A web‐based graphical user interface for CHARMM , 2008, J. Comput. Chem..

[61]  T. Noda,et al.  The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. , 2008, Molecular biology of the cell.

[62]  F. Inagaki,et al.  The Atg12-Atg5 Conjugate Has a Novel E3-like Activity for Protein Lipidation in Autophagy* , 2007, Journal of Biological Chemistry.

[63]  F. Inagaki,et al.  The Crystal Structure of Atg3, an Autophagy-related Ubiquitin Carrier Protein (E2) Enzyme that Mediates Atg8 Lipidation* , 2007, Journal of Biological Chemistry.

[64]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[65]  Takeshi Tokuhisa,et al.  The role of autophagy during the early neonatal starvation period , 2004, Nature.

[66]  Takeshi Noda,et al.  A ubiquitin-like system mediates protein lipidation , 2000, Nature.

[67]  Takeshi Noda,et al.  LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing , 2000, The EMBO journal.

[68]  C Combet,et al.  NPS@: network protein sequence analysis. , 2000, Trends in biochemical sciences.

[69]  Michael D. George,et al.  A protein conjugation system essential for autophagy , 1998, Nature.

[70]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[71]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[72]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[73]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[74]  F. Crick,et al.  The packing of α‐helices: simple coiled‐coils , 1953 .

[75]  Oliver Beckstein,et al.  MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations , 2016, SciPy.