Nanosurface chemistry and dose govern the bioaccumulation and toxicity of carbon nanotubes, metal nanomaterials and quantum dots in vivo

Abstract The chemical and biological mechanisms of life processes mostly consist of multistep and programmed processes at nanoscale levels. Interestingly enough, cell, the basic functional unit and platform that maintains life processes, is composed of various organelles fulfilling sophisticated functions through the precise control on the biomolecules (e.g., proteins, phospholipid, nucleic acid and ions) in a spatial dimension of nanoscale sizes. Thus, understanding of the activities of manufactured nanoscale materials including their interaction with biological systems is of great significance in chemistry, materials science, life science, medicine, environmental science and toxicology. In this brief review, we summarized the recent advances in nanotoxicological chemistry through the dissection of pivotal factors (primarily focusing on dose and nanosurface chemistry) in determining nanomaterial-induced biological/toxic responses with particular emphasis on the nanomaterial bioaccumulation (and interaction organs or target organs) at intact animal level. Due to the volume of manufacture and material application, we deliberately discussed carbon nanotubes, metal/metal oxide nanomaterials and quantum dots, severing as representative material types to illustrate the impact of dose and nanosurface chemistry in these toxicological scenarios. Finally, we have also delineated the grand challenges in this field in a conceptual framework of nanotoxicological chemistry. It is noted that this review is a part of our persistent endeavor of building the systematic knowledge framework for toxicological properties of engineered nanomaterials.摘要生命过程是由一系列发生在纳米尺度上的程序化、多级次、多步骤的化学、物理或生物学过程组成。有趣的是,在构成细胞的亚细胞器中或它们之间发生的这些复杂的过程,很多需要对生物分子(如蛋白质、核酸等)进行纳米尺度空间上的精确调控,以维持生命过程的正常进行。因此,理解在纳米尺度下物质与生命体系的相互作用,对生命科学与纳米科学、化学、材料科学、医学、环境健康科学和毒理学等领域的交叉和融合,将提供独特的视点和启迪。本文从纳米化学的角度,系统归纳影响纳米材料在体内的生物蓄积、作用器官(或靶器官)和体内毒性的关键因素,主要集中在纳米表面化学修饰和剂量效应。由于已有的纳米材料很多,我们在此重点分析了纳米碳管、金属相关(金属和金属氧化物)纳米材料以及量子点在生物体内的蓄积规律、作用器官选择性及其体内毒理;它们的剂量效应;以及纳米表面化学修饰对其体内蓄积规律、作用器官选择性及其体内毒理的调控作用。最后,我们从纳米化学的角度讨论这个领域具有挑战性的科学问题以及建立概念性知识框架尚需要深入研究的方向。这篇综述是我们将纳米毒理学领域的知识系统化的持续努力的一部分。

[1]  Wei Li,et al.  Fullerene nanoparticles selectively enter oxidation-damaged cerebral microvessel endothelial cells and inhibit JNK-related apoptosis. , 2009, ACS nano.

[2]  Jie Yu,et al.  High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. , 2014, ACS nano.

[3]  Yan Song,et al.  Potent angiogenesis inhibition by the particulate form of fullerene derivatives. , 2010, ACS nano.

[4]  Yi Zhang,et al.  Repeated carbon nanotube administrations in male mice cause reversible testis damage without affecting fertility , 2010, Nature Nanotechnology.

[5]  D. Scheinberg,et al.  Synthesis and biodistribution of oligonucleotide-functionalized, tumor-targetable carbon nanotubes. , 2008, Nano letters.

[6]  Yunlong Zhou,et al.  Chirality of glutathione surface coating affects the cytotoxicity of quantum dots. , 2011, Angewandte Chemie.

[7]  Y. Zhang,et al.  A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling , 2011, Cell Death and Disease.

[8]  Zongxi Li,et al.  Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. , 2013, ACS nano.

[9]  Xin Wang,et al.  Biodistribution of Pristine Single-Walled Carbon Nanotubes In Vivo† , 2007 .

[10]  Meng Wang,et al.  Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[11]  M. Prato,et al.  Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Rudolf Hagen,et al.  Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. , 2011, Toxicology letters.

[13]  Haifang Wang,et al.  A generally adoptable radiotracing method for tracking carbon nanotubes in animals , 2008, Nanotechnology.

[14]  Nanomedicine: Nanotechnology tackles tumours. , 2007, Nature nanotechnology.

[15]  Z. Chai,et al.  Comparative toxicity of nanoparticulate/bulk Yb₂O₃ and YbCl₃ to cucumber (Cucumis sativus). , 2012, Environmental science & technology.

[16]  Alok Dhawan,et al.  Nanomaterials: A challenge for toxicologists , 2009 .

[17]  Thomas Pons,et al.  Fluorine-18-labeled phospholipid quantum dot micelles for in vivo multimodal imaging from whole body to cellular scales. , 2008, Bioconjugate chemistry.

[18]  Jim E Riviere,et al.  Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes. , 2007, The Journal of investigative dermatology.

[19]  M. Wang,et al.  ICP-MS-based strategies for protein quantification. , 2010, Mass spectrometry reviews.

[20]  S. Davis,et al.  An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. , 1993, Biochimica et biophysica acta.

[21]  Wei Bai,et al.  Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation , 2010, Nanotechnology.

[22]  Feng Zhao,et al.  Acute toxicological effects of copper nanoparticles in vivo. , 2006, Toxicology letters.

[23]  Andrew Emili,et al.  Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. , 2014, ACS nano.

[24]  Hongzhe Sun,et al.  Transferrin-mediated gold nanoparticle cellular uptake. , 2005, Bioconjugate chemistry.

[25]  Ying Liu,et al.  Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. , 2011, Small.

[26]  Raghuraman Kannan,et al.  Nanocompatible chemistry toward fabrication of target-specific gold nanoparticles. , 2006, Journal of the American Chemical Society.

[27]  Yuliang Zhao,et al.  Lanthanide ion-doped GdPO4 nanorods with dual-modal bio-optical and magnetic resonance imaging properties. , 2012, Nanoscale.

[28]  Wolfgang J. Parak,et al.  Protein corona formation around nanoparticles – from the past to the future , 2014 .

[29]  Z. Chai,et al.  Unambiguous effects of lanthanum? , 2007, Toxicology letters.

[30]  Ya‐Ping Sun,et al.  Biodefunctionalization of functionalized single-walled carbon nanotubes in mice. , 2009, Biomacromolecules.

[31]  Donald R McCrimmon,et al.  Biocompatible nanoscale dispersion of single-walled carbon nanotubes minimizes in vivo pulmonary toxicity. , 2010, Nano letters.

[32]  Feng Zhao,et al.  Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. , 2007, Toxicology letters.

[33]  Manuela Semmler-Behnke,et al.  Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. , 2011, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[34]  Sanjiv S Gambhir,et al.  A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. , 2008, Nature nanotechnology.

[35]  W. Li,et al.  Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. , 2012, Nano letters.

[36]  Xing-Jie Liang,et al.  Inhibition of Tumor Growth by Endohedral Metallofullerenol Nanoparticles Optimized as Reactive Oxygen Species Scavenger , 2008, Molecular Pharmacology.

[37]  S. Bhatia,et al.  Probing the Cytotoxicity Of Semiconductor Quantum Dots. , 2004, Nano letters.

[38]  Chunxin Zhang,et al.  Significant effect of size on the in vivo biodistribution of gold composite nanodevices in mouse tumor models. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[39]  Bing Wang,et al.  Metabolism of nanomaterials in vivo: blood circulation and organ clearance. , 2013, Accounts of chemical research.

[40]  Z. Chai,et al.  Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. , 2007, Toxicology letters.

[41]  G. Oberdörster,et al.  Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology , 2010, Journal of internal medicine.

[42]  Guibin Jiang,et al.  Steering carbon nanotubes to scavenger receptor recognition by nanotube surface chemistry modification partially alleviates NFκB activation and reduces its immunotoxicity. , 2011, ACS nano.

[43]  Wei Bai,et al.  Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism , 2010 .

[44]  Hak Soo Choi,et al.  Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. , 2009, Nano letters.

[45]  Feng Zhao,et al.  The translocation of fullerenic nanoparticles into lysosome via the pathway of clathrin-mediated endocytosis , 2008, Nanotechnology.

[46]  Jingyuan Li,et al.  Revealing the binding structure of the protein corona on gold nanorods using synchrotron radiation-based techniques: understanding the reduced damage in cell membranes. , 2013, Journal of the American Chemical Society.

[47]  D. Cliffel,et al.  Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. , 2011, ACS nano.

[48]  Xinguo Jiang,et al.  Quantum dots bearing lectin-functionalized nanoparticles as a platform for in vivo brain imaging. , 2008, Bioconjugate chemistry.

[49]  Saji George,et al.  A predictive toxicological paradigm for the safety assessment of nanomaterials. , 2009, ACS nano.

[50]  Lutz Mädler,et al.  Environmental health and safety considerations for nanotechnology. , 2013, Accounts of chemical research.

[51]  Wei Li,et al.  Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases. , 2008, Toxicology letters.

[52]  Zhen Cheng,et al.  In vivo tumor-targeted fluorescence imaging using near-infrared non-cadmium quantum dots. , 2010, Bioconjugate chemistry.

[53]  Chunying Chen,et al.  Ultrahigh reactivity and grave nanotoxicity of copper nanoparticles , 2007 .

[54]  Hai-feng Zhang,et al.  Nano-CeO2 exhibits adverse effects at environmental relevant concentrations. , 2011, Environmental science & technology.

[55]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[56]  Yitao Ding,et al.  Biodistribution and accumulation of intravenously administered carbon nanotubes in mice probed by Raman spectroscopy and fluorescent labeling , 2009 .

[57]  Hua Guo,et al.  [Gd@C(82)(OH)(22)](n) nanoparticles induce dendritic cell maturation and activate Th1 immune responses. , 2010, ACS nano.

[58]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[59]  Chunying Chen,et al.  Identification of target organs of copper nanoparticles with ICP-MS technique , 2007 .

[60]  Curtis D. Klaassen,et al.  Casarett and Doull's Toxicology. The Basic Science of Poisons , 1981 .

[61]  Mark Bradley,et al.  Metal Oxide Nanoparticles Induce Unique Inflammatory Footprints in the Lung: Important Implications for Nanoparticle Testing , 2010, Environmental health perspectives.

[62]  Nicholas A Peppas,et al.  Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. , 2006, International journal of pharmaceutics.

[63]  Hai-feng Zhang,et al.  Uptake and distribution of ceria nanoparticles in cucumber plants. , 2011, Metallomics : integrated biometal science.

[64]  Yuliang Zhao,et al.  Facile Fabrication of Rare-Earth-Doped Gd2O3 Hollow Spheres with Upconversion Luminescence, Magnetic Resonance, and Drug Delivery Properties , 2011 .

[65]  Y. Liu,et al.  Selective targeting of gold nanorods at the mitochondria of cancer cells: implications for cancer therapy. , 2011, Nano letters.

[66]  Z. Chai,et al.  Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats. , 2008, Toxicological sciences : an official journal of the Society of Toxicology.

[67]  Meng Wang,et al.  Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. , 2006, Toxicology letters.

[68]  Z. Gu,et al.  Biodistribution of carbon single-wall carbon nanotubes in mice. , 2004, Journal of nanoscience and nanotechnology.

[69]  Xiao Zhang,et al.  Biodistribution of functionalized multiwall carbon nanotubes in mice. , 2007, Nuclear medicine and biology.

[70]  Jing Wang,et al.  Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice , 2008 .

[71]  E. A. Carr,et al.  A commentary on morphological and quantitative aspects of microparticle translocation across the gastrointestinal mucosa. , 1995, Journal of drug targeting.

[72]  C. Mirkin,et al.  Duplex end breathing determines serum stability and intracellular potency of siRNA-Au NPs. , 2011, Molecular pharmaceutics.

[73]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[74]  Xiaoyi Li,et al.  Control performance and biomembrane disturbance of carbon nanotube artificial water channels by nitrogen-doping. , 2010, ACS nano.

[75]  Kostas Kostarelos,et al.  Blood circulation and tissue biodistribution of lipid--quantum dot (L-QD) hybrid vesicles intravenously administered in mice. , 2009, Bioconjugate chemistry.

[76]  Yuliang Zhao,et al.  Nanotoxicology: Are carbon nanotubes safe? , 2008, Nature nanotechnology.

[77]  Xingfa Gao,et al.  Unraveling Stress‐Induced Toxicity Properties of Graphene Oxide and the Underlying Mechanism , 2012, Advanced materials.

[78]  Aoneng Cao,et al.  Cytotoxicity of zinc oxide nanoparticles: importance of microenvironment. , 2010, Journal of nanoscience and nanotechnology.

[79]  T. Xia,et al.  Pluronic F108 coating decreases the lung fibrosis potential of multiwall carbon nanotubes by reducing lysosomal injury. , 2012, Nano letters.

[80]  James E Hutchison,et al.  Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. , 2008, ACS nano.

[81]  Feng Zhao,et al.  Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. , 2011, Nanoscale.

[82]  T. Ichihashi,et al.  Biodistribution and ultrastructural localization of single-walled carbon nanohorns determined in vivo with embedded Gd2O3 labels. , 2009, ACS nano.

[83]  Yi Guo,et al.  Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. , 2011, Journal of the American Chemical Society.

[84]  Gert Storm,et al.  Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system , 1995 .

[85]  Wei Li,et al.  Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles. , 2008, Toxicology.

[86]  Z. Chai,et al.  Advanced nuclear analytical and related techniques for the growing challenges in nanotoxicology. , 2013, Chemical Society reviews.

[87]  Tian Xia,et al.  Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. , 2013, Accounts of chemical research.

[88]  Fei Wu,et al.  The splenic toxicity of water soluble multi-walled carbon nanotubes in mice , 2009 .

[89]  Sara Linse,et al.  Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles , 2007, Proceedings of the National Academy of Sciences.

[90]  Y. Liu,et al.  The effect of Gd@C82(OH)22 nanoparticles on the release of Th1/Th2 cytokines and induction of TNF-alpha mediated cellular immunity. , 2009, Biomaterials.

[91]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[92]  Feng Zhao,et al.  Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. , 2008, Environmental science & technology.

[93]  B. Wang,et al.  Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. , 2011, Toxicology letters.

[94]  Yuliang Zhao,et al.  Rapid translocation and pharmacokinetics of hydroxylated single-walled carbon nanotubes in mice , 2008 .

[95]  Z. Chai,et al.  Toxicity of inorganic nanomaterials in biomedical imaging. , 2014, Biotechnology advances.

[96]  W. Bai,et al.  Ecotoxicological assessment of lanthanum with Caenorhabditis elegans in liquid medium. , 2010, Metallomics : integrated biometal science.

[97]  R. Zhou,et al.  Binding of blood proteins to carbon nanotubes reduces cytotoxicity , 2011, Proceedings of the National Academy of Sciences.

[98]  N. Hadrup,et al.  Oral toxicity of silver ions, silver nanoparticles and colloidal silver--a review. , 2014, Regulatory toxicology and pharmacology : RTP.

[99]  Qiao Jiang,et al.  Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. , 2010, ACS nano.

[100]  Zhuang Liu,et al.  A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. , 2009, Nature nanotechnology.

[101]  Paul C. Wang,et al.  The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials. , 2009, Biomaterials.

[102]  Xing-Jie Liang,et al.  Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. , 2011, ACS nano.

[103]  S. Manna,et al.  Single-Walled Carbon Nanotube Induces Oxidative Stress and Activates Nuclear Transcription Factor-κB in Human Keratinocytes , 2005 .

[104]  Tonghua Wang,et al.  Translocation and fate of multi-walled carbon nanotubes in vivo , 2007 .

[105]  Meng Wang,et al.  Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. , 2008, Toxicology.

[106]  Liang Yan,et al.  Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications , 2013, Advanced materials.

[107]  Taosheng Chen,et al.  Suppression of human bone morphogenetic protein signaling by carboxylated single-walled carbon nanotubes. , 2009, ACS nano.

[108]  Hong Xu,et al.  Fluorescent, superparamagnetic nanospheres for drug storage, targeting, and imaging: a multifunctional nanocarrier system for cancer diagnosis and treatment. , 2010, ACS nano.

[109]  Er3+-doped YbPO4 up-conversion porous nanospheres for UCL/CT bimodal imaging in vivo and chemotherapy. , 2014, Journal of materials chemistry. B.

[110]  Chunhai Fan,et al.  In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. , 2011, Biomaterials.

[111]  Jerzy Leszczynski,et al.  Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. , 2011, Nature nanotechnology.

[112]  Yuliang Zhao,et al.  Engineered design of theranostic upconversion nanoparticles for tri-modal upconversion luminescence/magnetic resonance/X-ray computed tomography imaging and targeted delivery of combined anticancer drugs. , 2014, Journal of materials chemistry. B.

[113]  Craig A. Poland,et al.  Zeta potential and solubility to toxic ions as mechanisms of lung inflammation caused by metal/metal oxide nanoparticles. , 2012, Toxicological sciences : an official journal of the Society of Toxicology.

[114]  Yuliang Zhao,et al.  Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. , 2005, Environmental science & technology.

[115]  Dong Liang,et al.  Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice. , 2009, Biomaterials.

[116]  Allan Svendsen,et al.  Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. , 2006, Bioconjugate chemistry.

[117]  Yuliang Zhao,et al.  Serial silver clusters biomineralized by one peptide. , 2011, ACS nano.

[118]  W. Li,et al.  Bifunctional peptides that precisely biomineralize Au clusters and specifically stain cell nuclei. , 2012, Chemical communications.

[119]  R. Bai,et al.  Endoplasmic reticulum stress induced by zinc oxide nanoparticles is an earlier biomarker for nanotoxicological evaluation. , 2014, ACS nano.

[120]  Ya‐Ping Sun,et al.  Covalently PEGylated carbon nanotubes with stealth character in vivo. , 2008, Small.

[121]  Y. Liu,et al.  Understanding the toxicity of carbon nanotubes. , 2013, Accounts of chemical research.

[122]  Yuliang Zhao,et al.  Luminescent silver nanoclusters anchored by oligonucleotides detect human telomerase ribonucleic acid template. , 2013, The Analyst.

[123]  K. Wittmaack In Search of the Most Relevant Parameter for Quantifying Lung Inflammatory Response to Nanoparticle Exposure: Particle Number, Surface Area, or What? , 2006, Environmental health perspectives.

[124]  Meng Wang,et al.  Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice , 2009 .

[125]  N. Erathodiyil,et al.  Functionalization of inorganic nanoparticles for bioimaging applications. , 2011, Accounts of chemical research.

[126]  Il Je Yu,et al.  Acute inhalation toxicity of silver nanoparticles. , 2011, Toxicology and industrial health.

[127]  Wei Li,et al.  Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. , 2008, Analytical chemistry.

[128]  Gerd Ritter,et al.  PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue. , 2008, ACS nano.

[129]  G. Cheon,et al.  Radioiodination and biodistribution of quantum dots using Bolton-Hunter reagent. , 2011, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[130]  Vincent Castranova,et al.  Dispersal state of multiwalled carbon nanotubes elicits profibrogenic cellular responses that correlate with fibrogenesis biomarkers and fibrosis in the murine lung. , 2011, ACS nano.

[131]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[132]  Jun Liu,et al.  Intrauterine inflammation increases materno-fetal transfer of gold nanoparticles in a size-dependent manner in murine pregnancy. , 2013, Small.

[133]  T. Minko,et al.  Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[134]  Z. Chai,et al.  Direct measurement of lanthanum uptake and distribution in internodal cells of Chara , 2008 .

[135]  Ying Liu,et al.  Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. , 2010, Biomaterials.

[136]  Lutz Mädler,et al.  Nanomaterials in the environment: from materials to high-throughput screening to organisms. , 2011, ACS nano.

[137]  Yuliang Zhao,et al.  Size-tunable synthesis of lanthanide-doped Gd2O3 nanoparticles and their applications for optical and magnetic resonance imaging , 2012 .

[138]  H. Dai,et al.  In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. , 2020, Nature nanotechnology.

[139]  Marco P Monopoli,et al.  Biomolecular coronas provide the biological identity of nanosized materials. , 2012, Nature nanotechnology.

[140]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[141]  Feng Zhao,et al.  Bio-distribution and metabolic paths of silica coated CdSeS quantum dots. , 2008, Toxicology and applied pharmacology.

[142]  Clara L Santos-Cuevas,et al.  Multimeric system of 99mTc-labeled gold nanoparticles conjugated to c[RGDfK(C)] for molecular imaging of tumor α(v)β(3) expression. , 2011, Bioconjugate chemistry.