Rock glaciers and mountain hydrology: A review

Abstract In mountainous regions, climate change threatens cryospheric water resources, and understanding all components of the hydrological cycle is necessary for effective water resource management. Rock glaciers are climatically more resilient than glaciers and contain potentially hydrologically valuable ice volumes, and yet have received less attention, even though rock glacier hydrological importance may increase under future climate warming. In synthesising data from a range of global studies, we provide the first comprehensive evaluation of the hydrological role played by rock glaciers. We evaluate hydrological significance over a range of temporal and spatial scales, alongside the complex multiple hydrological processes with which rock glaciers can interact diurnally, seasonally, annually, decadally and both at local and regional extents. We report that although no global-extent, complete inventory for rock glaciers exists currently, recent research efforts have greatly elaborated spatial coverage. Using these research papers, we synthesise information on rock glacier spatial distribution, morphometric characteristics, surface and subsurface features, ice-storage and hydrological flow dynamics, water chemistry, and future resilience, from which we provide the first comprehensive evaluation of their hydrological contribution. We identify and discuss long-, intermediate- and short-term timescales for rock glacier storage, allowing a more balanced assessment of the contrasting perspectives regarding the relative significance of rock glacier-derived hydrological contributions compared to other water sources. We show that further empirical observations are required to gain a deeper hydrological understanding of rock glaciers, in terms of (i) their genesis and geomorphological dynamics (ii) total ice/water volume; (iii) water discharge; and (iv) water quality. Lastly, we hypothesise that at decadal and longer timescales, under future climate warming, degradation of ice within rock glaciers may represent an increasing hydrological contribution to downstream regions, and thus increased hydrological significance while rock glacier water stores persist.

[1]  Manuel Collet,et al.  Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change , 2013 .

[2]  W. B. Whalley,et al.  Rock glacier nomenclature: A re-assessment , 1995 .

[3]  E. Brückl,et al.  Internal structure and ice content of Reichenkar rock glacier (Stubai Alps, Austria) assessed by geophysical investigations , 2007 .

[4]  T. Bolch,et al.  The State and Fate of Himalayan Glaciers , 2012, Science.

[5]  T. Barnett,et al.  Potential impacts of a warming climate on water availability in snow-dominated regions , 2005, Nature.

[6]  O. Korup,et al.  Permafrost activity and atmospheric warming in the Argentinian Andes , 2018, Geomorphology.

[7]  M. Hayashi,et al.  Groundwater flow and storage processes in an inactive rock glacier , 2018, Hydrological Processes.

[8]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[9]  Jesús D. Gómez,et al.  Glacier recession and water resources in Peru’s Cordillera Blanca , 2012, Journal of Glaciology.

[10]  Andreas Kääb,et al.  Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8 , 2016, Remote. Sens..

[11]  Lambiel Christophe,et al.  ERS InSAR for assessing rock glacier activity , 2008 .

[12]  Simon Gascoin,et al.  Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S) , 2013 .

[13]  D. Barsch Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments , 1996 .

[14]  E. Reynard,et al.  Prospection géophysique multi-méthodes du pergélisol alpin dans le sud des Alpes suisses , 2011 .

[15]  Robert S. Anderson,et al.  Glaciation of alpine valleys: The glacier – debris-covered glacier – rock glacier continuum , 2018, Geomorphology.

[16]  D. Lettenmaier,et al.  Implications of decadal to century scale glacio‐hydrological change for water resources of the Hood River basin, OR, USA , 2016 .

[17]  A. Forte,et al.  Impact of natural parameters on rock glacier development and conservation in subtropical mountain ranges. Northern sector of the Argentine Central Andes , 2016 .

[18]  E. Forte,et al.  The origins of Antarctic rock glaciers: periglacial or glacial features? , 2018 .

[19]  M. Phillips,et al.  Factors Controlling Velocity Variations at Short‐Term, Seasonal and Multiyear Time Scales, Ritigraben Rock Glacier, Western Swiss Alps , 2017 .

[20]  Andreas Kääb,et al.  Prevention of outburst floods from periglacial lakes at Grubengletscher, Valais, Swiss Alps , 2001, Journal of Glaciology.

[21]  H. E. Martin,et al.  THE PROBLEM OF "HIDDEN" ICE IN GLACIER MAPPING , 1986 .

[22]  M. Triglav-Čekada,et al.  Nationwide aerial laser scanning reveals relict rock glaciers and protalus ramparts in Slovenia , 2016 .

[23]  A. Cox,et al.  ROCK GLACIERS IN THE ALASKA RANGE , 1959 .

[24]  M. Bierkens,et al.  Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers , 2017, Nature.

[25]  O. Korup,et al.  Rock‐glacier dams in High Asia , 2018, Earth Surface Processes and Landforms.

[26]  Lukas U. Arenson,et al.  Borehole deformation measurements and internal structure of some rock glaciers in Switzerland , 2002 .

[27]  J. Janke,et al.  Classification of debris-covered glaciers and rock glaciers in the Andes of central Chile , 2014 .

[28]  A. Green,et al.  Evaluation of Ground‐Based and Helicopter Ground‐Penetrating Radar Data Acquired Across an Alpine Rock Glacier , 2015 .

[29]  A. Emmert,et al.  Internal structure of two alpine rock glaciers investigated by quasi-3-D electrical resistivity imaging , 2016 .

[30]  C. Kinnard,et al.  Pluri-decadal (1955–2014) evolution of glacier–rock glacier transitional landforms in the central Andes of Chile (30–33° S) , 2016 .

[31]  W. Haeberli Glacier ice-cored rock glaciers in the Yukon Territory, Canada? , 1989, Journal of Glaciology.

[32]  C. Tovar,et al.  Glacial melt content of water use in the tropical Andes , 2017 .

[33]  A. Kääb PERIGLACIAL LANDFORMS, ROCK FORMS | Rock Glaciers and Protalus Forms , 2007 .

[34]  Geneviève Tenthorey Perennial névés and the hydrology of rock glaciers , 1992 .

[35]  T. Bolch,et al.  Characteristics and Origin of Rock Glaciers in Northern Tien Shan (Kazakhstan/Kyrgyzstan) , 2014 .

[36]  W. Haeberli,et al.  Creep of mountain permafrost:internal structure and flow of Alpine rock glaciers. , 1985 .

[37]  H. Maurer,et al.  A new model for estimating subsurface ice content based on combined electrical and seismic data sets , 2011 .

[38]  C. Hauck New Concepts in Geophysical Surveying and Data Interpretation for Permafrost Terrain , 2013 .

[39]  K. Anderson,et al.  Future climate warming and changes to mountain permafrost in the Bolivian Andes , 2016, Climatic Change.

[40]  Philip W. Mote,et al.  The Response of Northern Hemisphere Snow Cover to a Changing Climate , 2008 .

[41]  D. Clark,et al.  Old ice in rock glaciers may provide long-term climate records , 1996 .

[42]  P. Urdea,et al.  Southern Carpathian rock glaciers: Inventory, distribution and environmental controlling factors , 2017 .

[43]  D. Hedding,et al.  Rock glaciers in the Jutulsessen, Dronning Maud Land, East Antarctica , 2018 .

[44]  P. Johnson The structure of a talus-derived rock glacier deduced from its hydrology , 1981 .

[45]  Andrew G. Fountain,et al.  Water flow through temperate glaciers , 1998 .

[46]  Water resources in Chile: the critical relation between glaciers and mining for sustainable water management , 2013 .

[47]  M. Meybeck,et al.  Mountains of the world, water towers for humanity: Typology, mapping, and global significance , 2007 .

[48]  R. Tessadri,et al.  Rock Glacier Outflows May Adversely Affect Lakes: Lessons from the Past and Present of Two Neighboring Water Bodies in a Crystalline-Rock Watershed , 2014, Environmental science & technology.

[49]  A. Hubbard,et al.  POLYTHERMAL GLACIER HYDROLOGY: A REVIEW , 2011 .

[50]  S. Harris,et al.  Thermal regimes beneath coarse blocky materials , 1998 .

[51]  Adrienne Grêt-Regamey,et al.  Mountain Ecosystem Services: Who Cares? , 2012 .

[52]  G. Lieb,et al.  A new rock glacier inventory of the eastern European Alps , 2013 .

[53]  T. Bolch Significance of glaciers, rockglaciers and ice-rich permafrost in the Northern Tien Shan as water towers under climate change conditions , 2006 .

[54]  A. Brenning,et al.  Statistical analysis of topographic and climatic controls and multispectral signatures of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[55]  W. Haeberli Mountain permafrost — research frontiers and a special long-term challenge , 2013 .

[56]  S. Gruber,et al.  Mechanisms linking active rock glaciers and impounded surface water formation in high‐mountain areas , 2018 .

[57]  S. U. Nussbaumer,et al.  Glacier inventory and recent glacier variations in the Andes of Chile, South America , 2017, Annals of Glaciology.

[58]  J. Giardino,et al.  A Model of Water Movement in Rock Glaciers and Associated Water Characteristics , 2020 .

[59]  Hang Zhou,et al.  Seasonal snow cover regime and historical change in Central Asia from 1986 to 2008 , 2017 .

[60]  M. Guglielmin,et al.  The internal structure of rock glaciers and recently deglaciated slopes as revealed by geoelectrical tomography: insights on permafrost and recent glacial evolution in the Central and Western Alps (Italy–France) , 2010 .

[61]  C. Lambiel,et al.  Permafrost and Little Ice Age glacier relationships, Posets Massif, Central Pyrenees, Spain , 2004 .

[62]  Alexander H. Jarosch,et al.  Past and future sea-level change from the surface mass balance of glaciers , 2012 .

[63]  S. Peckham,et al.  The physical basis of glacier volume-area scaling , 1997 .

[64]  A. Ohmura,et al.  Estimation of Alpine glacier water resources and their change since the 1870s , 1990 .

[65]  N. Caine,et al.  Geochemistry and source waters of rock glacier outflow, Colorado Front Range , 2006 .

[66]  J. Milana,et al.  Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina , 2002 .

[67]  A. Brenning,et al.  Status and evolution of the cryosphere in the Andes of Santiago (Chile, 33.5°S.) , 2010 .

[68]  J. Murton,et al.  Interactions between glaciers and permafrost: an introduction , 2005, Geological Society, London, Special Publications.

[69]  M. Y. E. Angillieri Permafrost distribution map of San Juan Dry Andes (Argentina) based on rock glacier sites , 2017 .

[70]  S. Springman,et al.  Sub-surface Heterogeneities in the Murtèl: Corvatsch Rock Glacier, Switzerland , 2010 .

[71]  M. Stoffel,et al.  Changes in glaciers in the Swiss Alps and impact on basin hydrology: current state of the art and future research. , 2014, The Science of the total environment.

[72]  K. Krainer,et al.  Hydrology of Active Rock Glaciers: Examples from the Austrian Alps , 2002 .

[73]  Christophe Lambiel,et al.  Inventorying slope movements in an Alpine environment using DInSAR , 2014 .

[74]  S. Lamoureux,et al.  The active layer: A conceptual review of monitoring, modelling techniques and changes in a warming climate , 2013 .

[75]  K. Hewitt Rock Glaciers and Related Phenomena , 2014 .

[76]  D. Clark,et al.  Galena Creek rock glacier revisited—new observations on an old controversy , 1998 .

[77]  Stephan Gruber,et al.  Mountain permafrost: development and challenges of a young research field , 2010, Journal of Glaciology.

[78]  B. Whalley,et al.  Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate , 2008 .

[79]  Georg Kaser,et al.  A review of volume‐area scaling of glaciers , 2015, Reviews of geophysics.

[80]  Christophe Lambiel,et al.  Overview of rock glacier kinematics research in the Swiss Alps , 2010 .

[81]  R. Villalba,et al.  Ionic and stable isotope chemistry as indicators of water sources to the Upper Mendoza River basin, Central Andes of Argentina , 2017 .

[82]  O. Humlum The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland , 2000 .

[83]  Epie Boven,et al.  Characterization and Monitoring , 2018 .

[84]  F. Neugirg,et al.  Influence of glacier advance on the development of the multipart Riffeltal rock glacier, Central Austrian Alps , 2015 .

[85]  David R. Montgomery,et al.  Hydrologic response to valley‐scale structure in alpine headwaters , 2015 .

[86]  Lukas U. Arenson,et al.  Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 °C , 2005 .

[87]  N. Glasser,et al.  Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region, Nepal , 2008 .

[88]  A. Kääb,et al.  Rock glacier dynamics : implications from high-resolution measurements of surface velocity fields , 2002 .

[89]  Andrew G. Fountain,et al.  Debris-covered glaciers , 2000 .

[90]  K. Norton,et al.  Estimating Permafrost Distribution in the Maritime Southern Alps, New Zealand, Based on Climatic Conditions at Rock Glacier Sites , 2016, Front. Earth Sci..

[91]  S. E. White Rock Glaciers and Block fields, Review and new data , 1976, Quaternary Research.

[92]  Permafrost distribution modelling in the semi-arid Chilean Andes , 2016 .

[93]  S. Harrison Climate sensitivity: implications for the response of geomorphological systems to future climate change , 2009 .

[94]  S. Gruber,et al.  Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth , 2014 .

[95]  M. Phillips,et al.  New insights on permafrost genesis and conservation in talus slopes based on observations at Flüelapass, Eastern Switzerland , 2017 .

[96]  P. Schoeneich,et al.  Détection des mouvements de glaciers rocheux dans les Alpes françaises par interférométrie radar différentielle (D-InSAR) dérivée des archives satellitaires ERS (European Remote Sensing) , 2013 .

[97]  T. Bolch,et al.  A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: distribution of debris cover and mapping challenges , 2018, Earth System Science Data.

[98]  S. Miller,et al.  Influence of Rock Glaciers on Stream Hydrology in the La Sal Mountains, Utah , 2014 .

[99]  Michael Lehning,et al.  The European mountain cryosphere: a review of its current state, trends, and future challenges , 2018 .

[100]  C. Hauck,et al.  Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes , 2016 .

[101]  R. Betts,et al.  The distribution and hydrological significance of rock glaciers in the Nepalese Himalaya , 2018 .

[102]  J. Magnusson,et al.  Estimating the Effect of Different Influencing Factors on Rock Glacier Development in Two Regions in the Swiss Alps , 2017 .

[103]  C. Kinnard,et al.  Evidencing a large body of ice in a rock glacier, vanoise massif, northern french alps , 2013 .

[104]  P. Stadler,et al.  Impact of mountain permafrost on flow path and runoff response in a high alpine catchment , 2017 .

[105]  Li Xu,et al.  The second Chinese glacier inventory: data, methods and results , 2015 .

[106]  V. Kaufmann,et al.  About the relationship between rock glacier velocity and climate parameters in central Austria , 2022 .

[107]  M. Hoelzle,et al.  Ten years after the drilling through the permafrost of the active rock glacier Murtel, eastern Swiss Alps : Answered questions and new perspectives , 1998 .

[108]  M. Hoelzle,et al.  A spatial and temporal analysis of different periglacial materials by using geoelectrical, seismic and borehole temperature data at Murtèl–Corvatsch, Upper Engadin, Swiss Alps , 2013 .

[109]  David Parkes,et al.  Attribution of global glacier mass loss to anthropogenic and natural causes , 2014, Science.

[110]  J. Giardino,et al.  The significance of rock glaciers in the glacial-periglacial landscape continuum , 1988 .

[111]  J. Ruiz‐Fernández,et al.  Spatial characterization of glacial and periglacial landforms in the highlands of Sierra Nevada (Spain). , 2017, The Science of the total environment.

[112]  Andreas Kääb,et al.  On the response of rockglacier creep to surface temperature increase , 2007 .

[113]  John R. Giardino,et al.  Subsurface investigation of a rock glacier using ground-penetrating radar: Implications for locating stored water on Mars , 2003 .

[114]  Rolf Weingartner,et al.  Toward mountains without permanent snow and ice: MOUNTAINS WITHOUT PERMANENT SNOW AND ICE , 2017 .

[115]  Jennifer Gabrys,et al.  Climate change and Aedes albopictus risks in China: current impact and future projection , 2023, Infectious Diseases of Poverty.

[116]  A. Aschwanden Dynamics of Glaciers , 2012 .

[117]  C. Kinnard,et al.  Internal Structure and Composition of a Rock Glacier in the Dry Andes, Inferred from Ground‐penetrating Radar Data and its Artefacts , 2015 .

[118]  Karl Krainer,et al.  Flow velocities of active rock glaciers in the austrian alps , 2006 .

[119]  The Hydrological Significance of Rock Glaciers , 1976 .

[120]  Hansruedi Maurer,et al.  Geophysical imaging of alpine rock glaciers , 2007, Journal of Glaciology.

[121]  O. Humlum Active layer thermal regime at three rock glaciers in Greenland , 1997 .

[122]  M. Schreilechner,et al.  Identification and assessment of groundwater flow and storage components of the relict Schöneben Rock Glacier, Niedere Tauern Range, Eastern Alps (Austria) , 2016, Hydrogeology Journal.

[123]  S. Gruber,et al.  Rainfall as primary driver of discharge and solute export from rock glaciers: The Col d'Olen Rock Glacier in the NW Italian Alps. , 2018, The Science of the total environment.

[124]  M. Phillips,et al.  Near‐surface ventilation as a key for modeling the thermal regime of coarse blocky rock glaciers , 2018, Permafrost and Periglacial Processes.

[125]  David J. A. Evans,et al.  Glaciers and Glaciation , 1997 .

[126]  V. Kaufmann,et al.  Mapping of the 3 D Surface Motion Field of Doesen Rock Glacier ( Ankogel Group , Austria ) and its Spatio-Temporal Change ( 1954-1998 ) by Means of Digital Photogrammetry , 2008 .

[127]  R. Betts,et al.  Mountain rock glaciers contain globally significant water stores , 2018, Scientific Reports.

[128]  M. Tolotti,et al.  Evidence of rock glacier melt impacts on water chemistry and diatoms in high mountain streams , 2013 .

[129]  Michael Lehning,et al.  Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland , 2013 .

[130]  O. Humlum,et al.  Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, central‐eastern Norway , 2008 .

[131]  T. Bolch,et al.  Occurrence, evolution and ice content of ice‐debris complexes in the Ak‐Shiirak, Central Tien Shan revealed by geophysical and remotely‐sensed investigations , 2018, Earth Surface Processes and Landforms.

[132]  Sarah M. Springman,et al.  Characterization and Monitoring of the Furggwanghorn Rock Glacier, Turtmann Valley, Switzerland: Results from 2010 to 2012 , 2013 .

[133]  A. Ninfo,et al.  Current transition from glacial to periglacial processes in the Dolomites (South-Eastern Alps) , 2015 .

[134]  Alexander Brenning,et al.  Permafrost distribution modelling in the semi-arid Chilean Andes , 2016, The Cryosphere.

[135]  Andreas Kääb,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards , 2022 .

[136]  C. Ballantyne,et al.  Rock-slope failure following Late Pleistocene deglaciation on tectonically stable mountainous terrain , 2014 .

[137]  M. Hoelzle,et al.  The thermal regime of the active layer at the Murtèl rock glacier based on data from 2002 , 2004 .

[138]  Andreas Kääb,et al.  Evolution of a High-Mountain Thermokarst Lake in the Swiss Alps , 2001 .

[139]  R. Popescu Permafrost investigations in Iezer Mountains, Southern Carpathians , 2018, Revista de Geomorfologie.

[140]  Oriol Monserrat,et al.  DInSAR for a Regional Inventory of Active Rock Glaciers in the Dry Andes Mountains of Argentina and Chile with Sentinel-1 Data , 2018, Remote. Sens..

[141]  B. Moorman,et al.  Advances in geophysical methods for permafrost investigations , 2008 .

[142]  L. A. Rasmussen,et al.  Glossary of glacier mass balance and related terms , 2010 .

[143]  C. Lambiel,et al.  Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps , 2014 .

[144]  J. Baron,et al.  The differing biogeochemical and microbial signatures of glaciers and rock glaciers , 2016 .

[145]  T. Wagner,et al.  Impact of relict rock glaciers on spring and stream flow of alpine watersheds: Examples of the Niedere Tauern Range, Eastern Alps (Austria) , 2016 .

[146]  J. Janke,et al.  An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile , 2017 .

[147]  Peter Jansson,et al.  The concept of glacier storage: a review , 2003 .

[148]  W. Haeberli Modern Research Perspectives Relating to Permafrost Creep and Rock Glaciers: A Discussion , 2000 .

[149]  Wilfried Hagg,et al.  A comparison of glacier melt on debris-covered glaciers in the northern and southern Caucasus , 2011 .

[150]  M. Castro,et al.  Glaciares de Argentina: Resultados Preliminares del Inventario Nacional de Glaciares , 2017 .

[151]  A. Green,et al.  A new 3‐D thin‐skinned rock glacier model based on helicopter GPR results from the Swiss Alps , 2015 .

[152]  J. Knight,et al.  Rock glaciers and the geomorphological evolution of deglacierizing mountains , 2019, Geomorphology.

[153]  T. Bolch,et al.  Landsat-based inventory of glaciers in western Canada, 1985-2005 , 2010 .

[154]  J. Abermann,et al.  Recent speed‐up of an alpine rock glacier: an updated chronology of the kinematics of outer hochebenkar rock glacier based on geodetic measurements , 2016 .

[155]  Andreas Kääb,et al.  Recent Interannual Variations of Rock Glacier Creep in the European Alps. , 2008 .

[156]  M. Riedo,et al.  Rapidly moving rock glaciers in Mattertal , 2013 .

[157]  J. Milana,et al.  An inventory of cryospheric landforms in the arid diagonal of South America (high Central Andes, Atacama region, Chile) , 2017 .

[158]  I. Berthling Beyond confusion: Rock glaciers as cryo-conditioned landforms , 2011 .

[159]  M. Guglielmin,et al.  Relationships between glacier and rock glacier in the Maritime Alps, Schiantala Valley, Italy , 2007, Quaternary Research.

[160]  K. Krainer,et al.  Dynamics of an active rock glacier (Ötztal Alps, Austria) , 2004, Quaternary Research.

[161]  T. Bolch,et al.  The Randolph Glacier inventory: a globally complete inventory of glaciers , 2014 .

[162]  J. Janke Long-Term Flow Measurements (1961-2002) of the Arapaho, Taylor, and Fair Rock Glaciers, Front Range, Colorado , 2005 .

[163]  S. Outcalt,et al.  Photo-Interpretation of two Types of Rock Glacier in the Colorado Front Range, U.S.A. , 1965, Journal of Glaciology.

[164]  Ole Humlum,et al.  Origin of rock glaciers: Observations from Mellemfjord, Disko Island, Central West Greenland , 1996 .

[165]  Alexander Brenning,et al.  Climatic and geomorphological controls of rock glaciers in the Andes of Central Chile , 2005 .

[166]  H. E. Martin,et al.  Rock glaciers : II models and mechanisms , 1992 .

[167]  D. Viviroli,et al.  Mountains of the World: Vulnerable Water Towers for the 21st Century , 2004, AMBIO: A Journal of the Human Environment.

[168]  R. Betts,et al.  Global glacier volume projections under high-end climate change scenarios , 2019, The Cryosphere.

[169]  V. Kaufmann,et al.  Velocity Changes of Rock Glaciers and Induced Hazards , 2015 .

[170]  Andreas Kääb,et al.  Contrasting responses of Central Asian rock glaciers to global warming , 2015, Scientific Reports.

[171]  Lado W. Kenyi,et al.  Estimation of rock glacier surface deformation using SAR interferometry data , 2003, IEEE Trans. Geosci. Remote. Sens..

[172]  N. Nakamura,et al.  Genetic differences of rock glaciers and the discontinuous mountain permafrost zone in Kanchanjunga Himal, Eastern Nepal , 2001 .

[173]  Florian Hanzer,et al.  Projected cryospheric and hydrological impacts of 21st century climate change in the Ötztal Alps (Austria) simulated using a physically based approach , 2017 .

[174]  R. Hock,et al.  Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data , 2010 .

[175]  Alexander Brenning,et al.  Evaluating the destabilization susceptibility of active rock glaciers in the French Alps , 2019, The Cryosphere.

[176]  Fumitoshi Imaizumi,et al.  Interpretation of recent alpine landscape system evolution using geomorphic mapping and L-band InSAR analyses , 2018, Geomorphology.

[177]  M. Bierkens,et al.  Climate Change Will Affect the Asian Water Towers , 2010, Science.

[178]  W. Haeberli On the characteristics and possible origins of ice in rock glacier permafrost. , 1996 .

[179]  Gürcan Gürgen,et al.  DEBRIS-COVERED GLACIERS AND ROCK GLACIERS , 2010 .

[180]  jr. Robert P. Ackert A rock glacier/debris‐covered glacier system at Galena Creek, Absaroka Mountains, Wyoming , 1998 .

[181]  M. Hoelzle,et al.  The cooling effect of coarse blocks revisited: a modeling study of a purely conductive mechanism , 2008 .

[182]  A. Vieli,et al.  Rock glaciers on the run – understanding rock glacier landform evolution and recent changes from numerical flow modeling , 2016 .

[183]  J. Munroe Distribution, evidence for internal ice, and possible hydrologic significance of rock glaciers in the Uinta Mountains, Utah, USA , 2018, Quaternary Research.

[184]  John Yen,et al.  Introduction , 2004, CACM.

[185]  P. Schoeneich,et al.  The 2006 Collapse of the Bérard Rock Glacier (Southern French Alps) , 2008 .

[186]  D. Trombotto,et al.  Monitoring of Mountain Permafrost in the Central Andes, Cordon del Plata, Mendoza, Argentina , 1997 .

[187]  E. Lachapelle,et al.  Flow and internal structure of a rock glacier , 1997, Journal of Glaciology.

[188]  Tomáš Uxa,et al.  Rock glaciers in the Western and High Tatra Mountains, Western Carpathians , 2017 .

[189]  Tazio Strozzi,et al.  Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry , 2004 .

[190]  Noel L. Potter,et al.  Ice-Cored Rock Glacier, Galena Creek, Northern Absaroka Mountains, Wyoming , 1972 .

[191]  P. Adams Glossary of Glacier Mass Balance and Related Terms, prepared by the Working Group on Mass-Balance Terminology and Methods of the International Association of Cryospheric Sciences (IASC) , 2011 .

[192]  Georg Kaser,et al.  Contribution potential of glaciers to water availability in different climate regimes , 2010, Proceedings of the National Academy of Sciences.

[193]  Christophe Kinnard,et al.  Reconsidering the glacier to rock glacier transformation problem: New insights from the central Andes of Chile , 2015 .

[194]  Yngvar Larsen,et al.  Recent Acceleration of a Rock Glacier Complex, Ádjet, Norway, Documented by 62 Years of Remote Sensing Observations , 2018, Geophysical Research Letters.

[195]  M. Beniston Climatic Change in Mountain Regions: A Review of Possible Impacts , 2003 .

[196]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[197]  R. Tessadri,et al.  Rock glaciers in crystalline catchments: Hidden permafrost‐related threats to alpine headwater lakes , 2017, Global change biology.

[198]  M. Guglielmin,et al.  Rock glaciers, protalus ramparts and pronival ramparts in the south-eastern Alps , 2016 .

[199]  E. Forte,et al.  Is that a relict rock glacier? , 2019, Geomorphology.

[200]  Tobias Bolch,et al.  Hydrology: Asian glaciers are a reliable water source , 2017, Nature.

[201]  P. Frattini,et al.  A regional inventory of rock glaciers and protalus ramparts in the central Italian Alps , 2013 .

[202]  Andreas Kääb,et al.  Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water , 2008 .

[203]  M. Phillips,et al.  Estimating Non‐Conductive Heat Flow Leading to Intra‐Permafrost Talik Formation at the Ritigraben Rock Glacier (Western Swiss Alps) , 2017 .

[204]  Carlo Baroni,et al.  Distribution and behaviour of rock glaciers in the Adamello–Presanella Massif (Italian Alps) , 2004 .

[205]  B. Brock,et al.  Do debris-covered glaciers demonstrate distinctive hydrological behaviour compared to clean glaciers? , 2019, Journal of Hydrology.

[206]  Howard A. Zebker,et al.  Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR , 2013 .

[207]  K. Krainer,et al.  Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria , 2000 .

[208]  C. Millar,et al.  Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA , 2012 .

[209]  S. Gruber,et al.  Review: Impacts of permafrost degradation on inorganic chemistry of surface fresh water , 2017 .

[210]  M. Phillips,et al.  Permafrost is warming at a global scale , 2019, Nature Communications.

[211]  C. Hauck,et al.  Numerical modelling of convective heat transport by air flow in permafrost talus slopes , 2016 .

[212]  P. Limpach,et al.  Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland , 2018 .

[213]  N. Barrand,et al.  Glacier shrinkage driving global changes in downstream systems , 2017, Proceedings of the National Academy of Sciences.

[214]  A. Kääb,et al.  Composition and internal structures of a rock glacier on the strandflat of western Spitsbergen, Svalbard , 2005 .

[215]  K. Isaksen,et al.  Composition, flow and development of two tongue‐shaped rock glaciers in the permafrost of Svalbard , 2000 .

[216]  A. Gorbunov,et al.  Dynamics of rock glaciers of the Northern Tien Shan and the Djungar Ala Tau, Kazakhstan , 1992 .

[217]  H. Fowler,et al.  Elevation-dependent warming in mountain regions of the world , 2015 .

[218]  A. Vieli,et al.  Short-term velocity variations at three rock glaciers and their relationship with meteorological conditions , 2015, Earth Surface Dynamics.

[219]  C. Lambiel,et al.  Evidence of winter ascending air circulation throughout talus slopes and rock glaciers situated in the lower belt of alpine discontinuous permafrost (Swiss Alps) , 2005 .

[220]  Matthias Huss,et al.  A new model for global glacier change and sea-level rise , 2015, Front. Earth Sci..

[221]  S. Springman,et al.  Multidisciplinary investigations on three rock glaciers in the swiss alps: legacies and future perspectives , 2012 .

[222]  R. Kenner Geomorphological analysis on the interaction of Alpine glaciers and rock glaciers since the Little Ice Age , 2018, Land Degradation & Development.

[223]  N. Matsuoka,et al.  Degradation of talus‐derived rock glaciers in the Upper Engadin, Swiss Alps , 2002 .

[224]  C. Millar,et al.  Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships , 2008 .

[225]  Aparna Shukla,et al.  Synergistic approach for mapping debris-covered glaciers using optical–thermal remote sensing data with inputs from geomorphometric parameters , 2010 .

[226]  A. Brenning Benchmarking classifiers to optimally integrate terrain analysis and multispectral remote sensing in automatic rock glacier detection , 2009 .

[227]  I. Hajdas,et al.  A 10,300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy) , 2015, Quaternary Research.

[228]  Andreas Kääb,et al.  Rockglacier acceleration in the Turtmann valley (Swiss Alps): Probable controls , 2005 .

[229]  I. Roer,et al.  Rockglacier activity studies on a regional scale: comparison of geomorphological mapping and photogrammetric monitoring , 2007 .

[230]  Geng-nian Liu,et al.  Rock glaciers in Daxue Shan, south-eastern Tibetan Plateau: an inventory, their distribution, and their environmental controls , 2018, The Cryosphere.

[231]  Solveig H. Winsvold,et al.  Ice thickness measurements and volume estimates for glaciers in Norway , 2014 .

[232]  Paulo Pereira,et al.  Spatial distribution and morphometry of permafrost-related landforms in the Central Pyrenees and associated paleoclimatic implications , 2017 .

[233]  K. Anderson,et al.  A First Rock Glacier Inventory for the Bolivian Andes , 2014 .

[234]  K. Anderson,et al.  Rock Glaciers as Water Stores in the Bolivian Andes: An Assessment of Their Hydrological Importance , 2015 .

[235]  T. Tadono,et al.  Rock Glacier Inventory of the Valles Calchaquíes Region (~ 25°S), Salta, Argentina, Derived from ALOS Data , 2014 .

[236]  Evan Miles,et al.  Regional and global projections of twenty-first century glacier mass changes in response to climate scenarios from global climate models , 2013, Climate Dynamics.

[237]  Andreas Kääb,et al.  Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity , 2016, Remote. Sens..

[238]  L. Schrott,et al.  Ground Water Occurrence and Contributions to Streamflow in an Alpine Catchment, Colorado Front Range , 2003 .

[239]  A. Brenning Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S) , 2005 .

[240]  Jill S. Baron,et al.  Climate‐induced changes in high elevation stream nitrate dynamics , 2009 .

[241]  W. B. Whalley,et al.  Rock glaciers and protalus landforms: Analogous forms and ice sources on Earth and Mars , 2003 .

[242]  L. Schrott Global solar radiation, soil temperature and permafrost in the Central Andes, Argentina: A progress report , 1991 .

[243]  Bradley G. Johnson,et al.  The effect of topography, latitude, and lithology on rock glacier distribution in the Lemhi Range, central Idaho, USA , 2007 .

[244]  L. Nicholson,et al.  Can a simple Numerical Model Help to Fine-Tune the Analysis of Ground-Penetrating Radar Data? Hochebenkar Rock Glacier as a Case Study , 2016, Arctic, Antarctic, and Alpine Research.

[245]  D. Barsch Nature and importance of mass‐wasting by rock glaciers in alpine permafrost environments , 1977 .

[246]  W. Brian Whalley,et al.  Rock glaciers , 1987 .

[247]  M. R. van den Broeke,et al.  A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009 , 2013, Science.

[248]  V. Mair,et al.  Unexpected response of high Alpine Lake waters to climate warming. , 2007, Environmental science & technology.

[249]  Bernard Francou,et al.  Climate change and tropical Andean glaciers: Past, present and future , 2008 .

[250]  Aslak Grinsted,et al.  An estimate of global glacier volume , 2012 .

[251]  P. Johnson Rock glacier types and their drainage systems, Grizzly Creek, Yukon Territory , 1978 .

[252]  W. Haeberli Investigating glacier-permafrost relationships in high-mountain areas: historical background, selected examples and research needs , 2005, Geological Society, London, Special Publications.

[253]  Anil V. Kulkarni,et al.  Estimating the volume of glaciers in the Himalayan–Karakoram region using different methods , 2014 .

[254]  Glaciers and rock glaciers’ distribution at 28° SL, Dry Andes of Argentina, and some considerations about their hydrological significance , 2011 .

[255]  Marco Marcer,et al.  Interannual variability of rock glacier flow velocities in the European Alps. , 2018 .

[256]  S. Marchenko,et al.  The thermal environment of blocky materials in the mountains of Central Asia , 2004 .

[257]  A. Villa,et al.  Destabilisation of Creeping Permafrost: The Plator Rock Glacier Case Study (Central Italian Alps) , 2017 .

[258]  Matthias Huss,et al.  Global-scale hydrological response to future glacier mass loss , 2018, Nature Climate Change.

[259]  A. Ribolini,et al.  Two decades of responses (1986–2006) to climate by the Laurichard rock glacier, French Alps , 2009 .

[260]  Lin Zhao,et al.  Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry , 2016 .

[261]  Andreas Kääb,et al.  Observations and considerations on destabilizing active rock glaciers in the European Alps , 2008 .

[262]  N. Glasser,et al.  Rock glaciers in central Patagonia , 2018, Geografiska Annaler: Series A, Physical Geography.

[263]  A. Brenning,et al.  Statistical estimation and generalized additive modeling of rock glacier distribution in the San Juan Mountains, Colorado, United States , 2007 .

[264]  Dan Smith,et al.  An inventory of rock glaciers in the central British Columbia Coast Mountains, Canada, from high resolution Google Earth imagery , 2018 .

[265]  W. B. Whalley Origin of rock glaciers , 1974, Journal of Glaciology.

[266]  E. Brückl,et al.  Internal structure , ice content and dynamics of Ölgrube and Kaiserberg rock glaciers ( Ötztal Alps , Austria ) determined from geophysical surveys , 2022 .

[267]  Alexander Brenning,et al.  Hydrological and geomorphological significance of rock glaciers in the dry Andes, Chile (27°–33°S) , 2010 .

[268]  M. Stoffel,et al.  The days of plenty might soon be over in glacierized Central Asian catchments , 2014 .

[269]  A. Gillespie,et al.  Genetic variability of rock glaciers , 1998 .

[270]  C. Lambiel,et al.  Internal Structure and Current Evolution of Very Small Debris-Covered Glacier Systems Located in Alpine Permafrost Environments , 2016, Front. Earth Sci..

[271]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[272]  Swenja Rosenwinkel Rock glaciers and natural dams in Central Asia , 2018 .

[273]  Matthias Jakob,et al.  The significance of rock glaciers in the dry Andes – A discussion of Azócar and Brenning (2010) and Brenning and Azócar (2010) , 2010 .

[274]  V. Kaufmann,et al.  Deglaciation and its impact on permafrost and rock glacier evolution: New insight from two adjacent cirques in Austria. , 2017, The Science of the total environment.

[275]  T. Tadono,et al.  Rock glaciers in the patagonian andes: an inventory for the monte san lorenzo (cerro cochrane) massif, 47° s , 2015 .

[276]  Ross Woods,et al.  A precipitation shift from snow towards rain leads to a decrease in streamflow , 2014 .

[277]  J. Giardino,et al.  Engineering geomorphology of rock glaciers , 1999 .

[278]  R. Popescu,et al.  Low-altitude permafrost research in an overcooled talus slope-rock glacier system in the Romanian Carpathians (Detunata Goală, Apuseni Mountains). , 2017 .

[279]  Michael Dixon,et al.  Google Earth Engine: Planetary-scale geospatial analysis for everyone , 2017 .

[280]  Michael P. Bishop,et al.  Debris‐covered glaciers and rock glaciers in the nanga parbat himalaya, pakistan , 2000 .

[281]  L. Cecil,et al.  Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming , 1998 .

[282]  H. Fowler,et al.  Climate change and mountain water resources: overview and recommendations for research, management and policy , 2011 .