Conservation laws of surfactant transport equations

Equations of the interfacial convection and convection-diffusion describing the transport of surfactants, and more general interfacial balance laws, in the context of a three-dimensional incompressible two-phase flow are considered. Here, the interface is represented implicitly by a zero level set of an appropriate function. All interfacial quantities and operators are extended from the interface to the three-dimensional domain. In both convection and convection-diffusion settings, infinite families of conservation laws that essentially involve surfactant concentration are derived, using the direct construction method. The obtained results are also applicable to the construction of the general balance laws for other excess surface physical quantities. The system of governing equations is subsequently rewritten in a fully conserved form in the three-dimensional domain. The latter is essential for simulations using modern numerical methods.

[1]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[2]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[3]  A. Cheviakov,et al.  Analytical properties and exact solutions of static plasma equilibrium systems in three dimensions , 2007, 0708.4247.

[4]  Jie Zhang,et al.  A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport , 2006, J. Comput. Phys..

[5]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[6]  Héctor D. Ceniceros,et al.  The effects of surfactants on the formation and evolution of capillary waves , 2003 .

[7]  U. Nordbrock,et al.  On the Construction of Conservation Laws , 2002 .

[8]  Stephen C. Anco,et al.  Construction of conservation laws: how the direct method generalizes Noether's theorem , 2009 .

[9]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[10]  H. Brenner,et al.  A micromechanical investigation of interfacial transport processes. I. Interfacial conservation equations , 1993, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[11]  Martin Oberlack,et al.  A thermodynamic model of multiphase flows with moving interfaces and contact line , 2011 .

[12]  A Boon,et al.  Influence of dynamic interfacial properties on droplet breakup in simple shear flow , 1994 .

[13]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[14]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[15]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[16]  C. Pozrikidis,et al.  Evolution Equations for the Surface Concentration of an Insoluble Surfactant; Applications to the Stability of an Elongating Thread and a Stretched Interface , 2004 .

[17]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[18]  James B. Grotberg,et al.  PULMONARY FLOW AND TRANSPORT PHENOMENA , 1994 .

[19]  Charles M. Elliott,et al.  Eulerian finite element method for parabolic PDEs on implicit surfaces , 2008 .

[20]  David S. Rumschitzki,et al.  On the surfactant mass balance at a deforming fluid interface , 1996 .

[21]  Jean-François Remacle,et al.  A quadrature-free discontinuous Galerkin method for the level set equation , 2006, J. Comput. Phys..

[22]  Ming-Chih Lai,et al.  An immersed boundary method for interfacial flows with insoluble surfactant , 2008, J. Comput. Phys..

[23]  A. Cheviakov Computation of fluxes of conservation laws , 2009, 0907.0689.

[24]  C. Pozrikidis,et al.  Effect of surfactants on the deformation of drops and bubbles in Navier–Stokes flow , 2006 .

[25]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[26]  J. Sethian,et al.  Transport and diffusion of material quantities on propagating interfaces via level set methods , 2003 .

[27]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[28]  M. Oberlack,et al.  Higher-order symmetries and conservation laws of the G-equation for premixed combustion and resulting numerical schemes , 2010 .

[29]  G. Simonett,et al.  Well-posedness of a Two-phase Flow with Soluble Surfactant , 2005 .

[30]  G. Bluman,et al.  Direct construction method for conservation laws of partial differential equations Part II: General treatment , 2001, European Journal of Applied Mathematics.

[31]  T. M. Tsai,et al.  Tip streaming from a drop in the presence of surfactants. , 2001, Physical review letters.

[32]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[33]  M. Burger Finite element approximation of elliptic partial differential equations on implicit surfaces , 2009 .

[34]  Stephen C. Anco,et al.  Direct construction method for conservation laws of partial differential equations Part I: Examples of conservation law classifications , 2001, European Journal of Applied Mathematics.

[35]  Alexei F. Cheviakov,et al.  GeM software package for computation of symmetries and conservation laws of differential equations , 2007, Comput. Phys. Commun..

[36]  Han E. H. Meijer,et al.  Droplet behavior in the presence of insoluble surfactants , 2004 .

[37]  Charles M. Elliott,et al.  Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method , 2008, J. Comput. Phys..

[38]  R. Braun,et al.  "Tying up loose ends" – silicone surfactants as stabilizing agents for flexible polyurethane foam , 2006 .

[39]  M. Rumpf Finite Volume Method on Moving Surfaces , 2008 .

[40]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[41]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[42]  G. Bluman,et al.  Applications of Symmetry Methods to Partial Differential Equations , 2009 .

[43]  D. Halpern,et al.  Interaction of exogenous and endogenous surfactant: spreading-rate effects. , 1995, Journal of applied physiology.

[44]  John C. Slattery,et al.  Interfacial Transport Phenomena , 1990 .

[45]  G. Bluman,et al.  Direct Construction of Conservation Laws from Field Equations , 1997 .

[46]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[47]  D. Halpern,et al.  Destabilization of a creeping flow by interfacial surfactant: linear theory extended to all wavenumbers , 2003, Journal of Fluid Mechanics.