A Fast Butterfly Algorithm for the Computation of Fourier Integral Operators

This paper is concerned with the fast computation of Fourier integral operators of the general form ∫_(R^d) e^[(2πiΦ)(x,k)]f(k)dk, where k is a frequency variable, Φ(x, k) is a phase function obeying a standard homogeneity condition, and f is a given input. This is of interest, for such fundamental computations are connected with the problem of finding numerical solutions to wave equations and also frequently arise in many applications including reflection seismology, curvilinear tomography, and others. In two dimensions, when the input and output are sampled on N × N Cartesian grids, a direct evaluation requires O(N^4) operations, which is often times prohibitively expensive. This paper introduces a novel algorithm running in O(N^2 log N) time, i.e., with near-optimal computational complexity, and whose overall structure follows that of the butterfly algorithm. Underlying this algorithm is a mathematical insight concerning the restriction of the kernel e^[2πiΦ(x,k)] to subsets of the time and frequency domains. Whenever these subsets obey a simple geometric condition, the restricted kernel is approximately low-rank; we propose constructing such low-rank approximations using a special interpolation scheme, which prefactors the oscillatory component, interpolates the remaining nonoscillatory part, and finally remodulates the outcome. A byproduct of this scheme is that the whole algorithm is highly efficient in terms of memory requirement. Numerical results demonstrate the performance and illustrate the empirical properties of this algorithm.

[1]  Lexing Ying,et al.  Fast Directional Computation for the High Frequency Helmholtz Kernel in Two Dimensions , 2008 .

[2]  Lexing Ying,et al.  A fast directional algorithm for high frequency acoustic scattering in two dimensions , 2009 .

[3]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[4]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[5]  Lexing Ying,et al.  Fast Computation of Partial Fourier Transforms , 2009, Multiscale Model. Simul..

[6]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[7]  E. Candès,et al.  New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .

[8]  J. Dicapua Chebyshev Polynomials , 2019, Fibonacci and Lucas Numbers With Applications.

[9]  Gabriele Steidl,et al.  Fast Fourier Transforms for Nonequispaced Data: A Tutorial , 2001 .

[10]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[11]  L. Demanet,et al.  Wave atoms and sparsity of oscillatory patterns , 2007 .

[12]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[13]  Laurent Demanet,et al.  Fast Computation of Fourier Integral Operators , 2006, SIAM J. Sci. Comput..

[14]  E. Michielssen,et al.  A multilevel matrix decomposition algorithm for analyzing scattering from large structures , 1996 .

[15]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[16]  Laurent Demanet,et al.  Discrete Symbol Calculus , 2008, SIAM Rev..

[17]  V. Rokhlin Diagonal Forms of Translation Operators for the Helmholtz Equation in Three Dimensions , 1993 .

[18]  A.,et al.  FAST FOURIER TRANSFORMS FOR NONEQUISPACED DATA * , 2022 .

[19]  Zydrunas Gimbutas,et al.  A wideband fast multipole method for the Helmholtz equation in three dimensions , 2006, J. Comput. Phys..

[20]  Chris Anderson,et al.  Rapid Computation of the Discrete Fourier Transform , 1996, SIAM J. Sci. Comput..

[21]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[22]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[23]  Jian-Ming Jin,et al.  Fast and Efficient Algorithms in Computational Electromagnetics , 2001 .

[24]  Ronald R. Coifman,et al.  Fast Numerical Computations of Oscillatory Integrals Related to Acoustic Scattering, I , 1993 .

[25]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[26]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[27]  Lexing Ying,et al.  Fast Directional Multilevel Algorithms for Oscillatory Kernels , 2007, SIAM J. Sci. Comput..

[28]  Eric F Darve The Fast Multipole Method , 2000 .

[29]  Laurent Demanet,et al.  Scattering in Flatland: Efficient Representations via Wave Atoms , 2010, Found. Comput. Math..

[30]  E. Candès,et al.  Curvelets and Fourier Integral Operators , 2003 .

[31]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[32]  Ronald R. Coifman,et al.  Efficient Computation of Oscillatory Integrals via Adaptive Multiscale Local Fourier Bases , 2000 .

[33]  Lexing Ying,et al.  Sparse Fourier Transform via Butterfly Algorithm , 2008, SIAM J. Sci. Comput..

[34]  G. Beylkin The inversion problem and applications of the generalized radon transform , 1984 .

[35]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[36]  Michael O'Neil,et al.  A new class of analysis-based fast transforms , 2007 .

[37]  Daan Huybrechs,et al.  A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel , 2006 .

[38]  Gang Bao,et al.  Computation of Pseudo-Differential Operators , 1996, SIAM J. Sci. Comput..

[39]  Eric F Darve,et al.  A fast multipole method for Maxwell equations stable at all frequencies , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..