Boundary controlled irreversible port-Hamiltonian systems

Boundary controlled irreversible port-Hamiltonian systems (BC-IPHS) on 1-dimensional spatial domains are defined by extending the formulation of reversible BC-PHS to irreversible thermodynamic systems controlled at the boundaries of their spatial domains. The structure of BC-IPHS has clear physical interpretation, characterizing the coupling between energy storing and energy dissipating elements. By extending the definition of boundary port variables of BC-PHS to deal with the dissipative terms, a set of boundary port variables are defined such that BC-IPHS are passive with respect to a given set of conjugated inputs and outputs. As for finite dimensional IPHS, the first and second principle are satisfied as a structural property. Several examples are given to illustrate the proposed approach.

[1]  Bernhard Maschke,et al.  On the passivity based control of irreversible processes: A port-Hamiltonian approach , 2016, Autom..

[2]  Leon A. Takhtajan,et al.  The Hamiltonian Formulation , 2007 .

[3]  P. Olver Applications of lie groups to differential equations , 1986 .

[4]  Romeo Ortega,et al.  On the control of non-linear processes: An IDA–PBC approach , 2009 .

[5]  P. Christofides,et al.  Nonlinear and Robust Control of PDE Systems: Methods and Applications to Transport-Reaction Processes , 2002 .

[6]  Arjan van der Schaft,et al.  Geometry of Thermodynamic Processes , 2018, Entropy.

[7]  M. Krüger,et al.  On a variational principle in thermodynamics , 2013 .

[8]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[9]  Denis Dochain,et al.  Power-shaping control: Writing the system dynamics into the Brayton-Moser form , 2011, Syst. Control. Lett..

[10]  Françoise Couenne,et al.  Lyapunov-based control of non isothermal continuous stirred tank reactors using irreversible thermodynamics , 2012 .

[11]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[12]  Hans Zwart,et al.  Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control , 2017, Autom..

[13]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[14]  P. Daoutidis,et al.  Robust control of hyperbolic PDE systems , 1998 .

[15]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[16]  Y. L. Gorrec,et al.  An irreversible port-Hamiltonian formulation of distributed diffusion processes , 2016 .

[17]  Denis Dochain,et al.  An entropy-based formulation of irreversible processes based on contact structures , 2010 .

[18]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[19]  Stefano Stramigioli,et al.  Modeling and Control of Complex Physical Systems - The Port-Hamiltonian Approach , 2014 .

[20]  Arjan van der Schaft,et al.  Characterization of Gradient Control Systems , 2005, SIAM J. Control. Optim..

[21]  A. Schaft,et al.  Port-controlled Hamiltonian systems : modelling origins and systemtheoretic properties , 1992 .

[22]  Daniel Sbarbaro,et al.  Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR , 2013 .

[23]  Ahmet Palazoglu,et al.  Control of nonlinear distributed parameter processes using symmetry groups and invariance conditions , 2002 .

[24]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism , 1997 .

[25]  A. J. van der Schaft,et al.  On feedback control of Hamiltonian systems , 1985 .

[26]  Wolfgang Muschik,et al.  A simple example for comparing GENERIC with rational non-equilibrium thermodynamics , 2000 .

[27]  Denis Dochain,et al.  Power-shaping control of reaction systems: The CSTR case , 2010, Autom..

[28]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[29]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[30]  Bernhard Maschke,et al.  Modelling and control of multi-energy systems: An irreversible port-Hamiltonian approach , 2013, Eur. J. Control.

[31]  François Gay-Balmaz,et al.  A Variational Formulation of Nonequilibrium Thermodynamics for Discrete Open Systems with Mass and Heat Transfer , 2018, Entropy.

[32]  B. Maschke,et al.  Dissipative boundary control systems with application to distributed parameters reactors , 2006, 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control.

[33]  Bernhard Maschke,et al.  An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes , 2007 .

[34]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[35]  Hans Zwart,et al.  On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems , 2017, IEEE Transactions on Automatic Control.

[36]  Hans Zwart,et al.  Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback , 2014, IEEE Transactions on Automatic Control.

[37]  Miroslav Grmela,et al.  Dynamics and thermodynamics of complex fluids. I. Development of a general formalism , 1997 .

[38]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[39]  Antonio A. Alonso,et al.  Stabilization of distributed systems using irreversible thermodynamics , 2001, Autom..

[40]  Bernhard Maschke,et al.  Feedback equivalence of input-output contact systems , 2013, Syst. Control. Lett..

[41]  Arjan van der Schaft,et al.  Compositional modelling of distributed-parameter systems , 2005 .

[42]  Bernhard Maschke,et al.  Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold , 2017, IEEE Transactions on Automatic Control.

[43]  Elena Panteley,et al.  Advanced topics in control systems theory : lecture notes from FAP 2004 , 2005 .

[44]  S. Sandler Chemical, Biochemical, and Engineering Thermodynamics , 2017 .

[45]  Bernhard Maschke,et al.  Dissipative Systems Analysis and Control , 2000 .

[46]  F. P. Bowden,et al.  Chemical Thermodynamics , 1947, Nature.

[47]  Julio R. Banga,et al.  From irreversible thermodynamics to a robust control theory for distributed process systems , 2002 .

[48]  R. Jackson,et al.  General mass action kinetics , 1972 .

[49]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[50]  Peter Salamon,et al.  Contact structure in thermodynamic theory , 1991 .

[51]  H. Callen Thermodynamics and an Introduction to Thermostatistics , 1988 .

[52]  Thomas Meurer,et al.  Dissipative observers for coupled diffusion-convection-reaction systems , 2018, Autom..

[53]  B. Ydstie,et al.  Process systems, passivity and the second law of thermodynamics , 1996 .

[54]  Alessandro Macchelli,et al.  Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping , 2020, IEEE Transactions on Automatic Control.

[55]  Hans Zwart,et al.  Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators , 2005, SIAM J. Control. Optim..

[56]  J. K. Moser,et al.  A theory of nonlinear networks. I , 1964 .

[57]  Jessica R. Whitman,et al.  Thermodynamic driving force for diffusion: comparison between theory and simulation. , 2011, The Journal of chemical physics.

[58]  Rutherford Aris,et al.  Elementary Chemical Reactor Analysis , 1969 .

[59]  Françoise Couenne,et al.  The port Hamiltonian approach to modeling and control of Continuous Stirred Tank Reactors , 2011 .

[60]  Romeo Ortega,et al.  Passivity-based Control of Euler-Lagrange Systems , 1998 .

[61]  J. Keenan Availability and irreversibility in thermodynamics , 1951 .