Coactivation of Pre- and Postsynaptic Signaling Mechanisms Determines Cell-Specific Spike-Timing-Dependent Plasticity

[1]  P. J. Sjöström,et al.  Multiple forms of long-term plasticity at unitary neocortical layer 5 synapses , 2007, Neuropharmacology.

[2]  Clifton C. Rumsey,et al.  Synaptic democracy in active dendrites. , 2006, Journal of neurophysiology.

[3]  B. Sakmann,et al.  Spine Ca2+ Signaling in Spike-Timing-Dependent Plasticity , 2006, The Journal of Neuroscience.

[4]  P. J. Sjöström,et al.  A Cooperative Switch Determines the Sign of Synaptic Plasticity in Distal Dendrites of Neocortical Pyramidal Neurons , 2006, Neuron.

[5]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[6]  S. Wang,et al.  Malleability of Spike-Timing-Dependent Plasticity at the CA3–CA1 Synapse , 2006, The Journal of Neuroscience.

[7]  Vanessa A. Bender,et al.  Two Coincidence Detectors for Spike Timing-Dependent Plasticity in Somatosensory Cortex , 2006, The Journal of Neuroscience.

[8]  T. Freund,et al.  CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons , 2005, Neuroscience.

[9]  Wade G. Regehr,et al.  Endocannabinoids Control the Induction of Cerebellar LTD , 2005, Neuron.

[10]  C. Jahr,et al.  High-Concentration Rapid Transients of Glutamate Mediate Neural-Glial Communication via Ectopic Release , 2005, The Journal of Neuroscience.

[11]  S. Wang,et al.  Dissection of bidirectional synaptic plasticity into saturable unidirectional processes. , 2005, Journal of neurophysiology.

[12]  Y. Dan,et al.  Spike-timing-dependent synaptic plasticity depends on dendritic location , 2005, Nature.

[13]  David W. Nauen,et al.  Coactivation and timing-dependent integration of synaptic potentiation and depression , 2005, Nature Neuroscience.

[14]  M. Rubio Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus , 2004, The Journal of comparative neurology.

[15]  L. Trussell,et al.  Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus , 2004, Nature Neuroscience.

[16]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[17]  M. Sheng,et al.  Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity , 2004, Science.

[18]  B. Sakmann,et al.  Single Spine Ca2+ Signals Evoked by Coincident EPSPs and Backpropagating Action Potentials in Spiny Stellate Cells of Layer 4 in the Juvenile Rat Somatosensory Barrel Cortex , 2004, The Journal of Neuroscience.

[19]  Eric D. Young,et al.  What's a cerebellar circuit doing in the auditory system? , 2004, Trends in Neurosciences.

[20]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.

[21]  Enrico Mugnaini,et al.  Distribution and targets of the cartwheel cell axon in the dorsal cochlear nucleus of the guinea pig , 2004, Anatomy and Embryology.

[22]  P. Gean,et al.  Mediation of Amphetamine-Induced Long-Term Depression of Synaptic Transmission by CB1 Cannabinoid Receptors in the Rat Amygdala , 2003, The Journal of Neuroscience.

[23]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[24]  T. Freund,et al.  Role of endogenous cannabinoids in synaptic signaling. , 2003, Physiological reviews.

[25]  P. Castillo,et al.  Heterosynaptic LTD of Hippocampal GABAergic Synapses A Novel Role of Endocannabinoids in Regulating Excitability , 2003, Neuron.

[26]  Alison L. Barth,et al.  A developmental switch in the signaling cascades for LTP induction , 2003, Nature Neuroscience.

[27]  Donata Oertel,et al.  Bidirectional synaptic plasticity in the cerebellum-like mammalian dorsal cochlear nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Curtis C. Bell,et al.  Evolution of Cerebellum-Like Structures , 2002, Brain, Behavior and Evolution.

[29]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[30]  L. Cooper,et al.  A unified model of NMDA receptor-dependent bidirectional synaptic plasticity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  U. Karmarkar,et al.  A model of spike-timing dependent plasticity: one or two coincidence detectors? , 2002, Journal of neurophysiology.

[32]  David Robbe,et al.  Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[33]  D. Lovinger,et al.  Postsynaptic endocannabinoid release is critical to long-term depression in the striatum , 2002, Nature Neuroscience.

[34]  R. Nicoll,et al.  Endocannabinoid Signaling in the Brain , 2002, Science.

[35]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[36]  Richard R. Fay,et al.  Integrative Functions in the Mammalian Auditory Pathway , 2002, Springer Handbook of Auditory Research.

[37]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[38]  K. A. Davis,et al.  Circuitry and Function of the Dorsal Cochlear Nucleus , 2002 .

[39]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[40]  Y. Dan,et al.  Stimulus Timing-Dependent Plasticity in Cortical Processing of Orientation , 2001, Neuron.

[41]  Anatol C. Kreitzer,et al.  Cerebellar Depolarization-Induced Suppression of Inhibition Is Mediated by Endogenous Cannabinoids , 2001, The Journal of Neuroscience.

[42]  T. Freund,et al.  Novel cannabinoid-sensitive receptor mediates inhibition of glutamatergic synaptic transmission in the hippocampus , 2001, Neuroscience.

[43]  R. Nicoll,et al.  Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses , 2001, Nature.

[44]  M. Kano,et al.  Endogenous Cannabinoids Mediate Retrograde Signals from Depolarized Postsynaptic Neurons to Presynaptic Terminals , 2001, Neuron.

[45]  Anatol C. Kreitzer,et al.  Retrograde Inhibition of Presynaptic Calcium Influx by Endogenous Cannabinoids at Excitatory Synapses onto Purkinje Cells , 2001, Neuron.

[46]  B. Sakmann,et al.  Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell‐specific difference in presynaptic calcium dynamics , 2001, The Journal of physiology.

[47]  T. Soderling,et al.  Calcium/calmodulin-dependent protein kinase II inhibitor protein: localization of isoforms in rat brain , 2001, Neuroscience.

[48]  S. Wang,et al.  Coincidence detection in single dendritic spines mediated by calcium release , 2000, Nature Neuroscience.

[49]  M. Poo,et al.  Calcium stores regulate the polarity and input specificity of synaptic modification , 2000, Nature.

[50]  K. Tóth,et al.  Differential Mechanisms of Transmission at Three Types of Mossy Fiber Synapse , 2000, The Journal of Neuroscience.

[51]  B. May Role of the dorsal cochlear nucleus in the sound localization behavior of cats , 2000, Hearing Research.

[52]  V. Han,et al.  Reversible Associative Depression and Nonassociative Potentiation at a Parallel Fiber Synapse , 2000, Neuron.

[53]  D. Feldman,et al.  Timing-Based LTP and LTD at Vertical Inputs to Layer II/III Pyramidal Cells in Rat Barrel Cortex , 2000, Neuron.

[54]  P. Soubrié,et al.  Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. , 2000, Journal of neurophysiology.

[55]  A. Hoffman,et al.  Mechanisms of Cannabinoid Inhibition of GABAASynaptic Transmission in the Hippocampus , 2000, The Journal of Neuroscience.

[56]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[57]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[58]  D. Piomelli,et al.  Endogenous Cannabinoid Signaling , 1998, Neurobiology of Disease.

[59]  B. Sakmann,et al.  Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[61]  D. P. Sutherland,et al.  Role of acoustic striae in hearing: discrimination of sound-source elevation , 1998, Hearing Research.

[62]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Thomson Activity‐dependent properties of synaptic transmission at two classes of connections made by rat neocortical pyramidal axons in vitro , 1997, The Journal of physiology.

[64]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[65]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[66]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[67]  E D Young,et al.  Effects of somatosensory and parallel-fiber stimulation on neurons in dorsal cochlear nucleus. , 1996, Journal of neurophysiology.

[68]  G. Spirou,et al.  Physiology and morphology of complex spiking neurons in the guinea pig dorsal cochlear nucleus , 1994, The Journal of comparative neurology.

[69]  S. Zhang,et al.  Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. , 1993, Journal of neurophysiology.

[70]  K. Stratford,et al.  Presynaptic release probability influences the locus of long-term potentiation , 1992, Nature.

[71]  D. Faber,et al.  Applicability of the coefficient of variation method for analyzing synaptic plasticity. , 1991, Biophysical journal.

[72]  R. Tsien,et al.  Changes in Presynaptic Function during Long‐Term Potentiation , 1991, Annals of the New York Academy of Sciences.

[73]  E. Mugnaini,et al.  Effects of the murine mutation ‘nervous’ on neurons in cerebellum and dorsal cochlear nucleus , 1988, Journal of neurocytology.

[74]  B. Gustafsson,et al.  Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  E. Mugnaini GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry , 1985, The Journal of comparative neurology.

[76]  E. Mugnaini,et al.  Cartwheel neurons of the dorsal cochlear nucleus: A Golgi‐electron microscopic study in rat , 1984, The Journal of comparative neurology.

[77]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[78]  C. Bell An efference copy which is modified by reafferent input. , 1981, Science.

[79]  Enrico Mugnaini,et al.  Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse , 1980, The Journal of comparative neurology.