Interactive Structure-aware Blending of Diverse Edge Bundling Visualizations

Many edge bundling techniques (i.e., data simplification as a support for data visualization and decision making) exist but they are not directly applicable to any kind of dataset and their parameters are often too abstract and difficult to set up. As a result, this hinders the user ability to create efficient aggregated visualizations. To address these issues, we investigated a novel way of handling visual aggregation with a task-driven and user-centered approach. Given a graph, our approach produces a decluttered view as follows: first, the user investigates different edge bundling results and specifies areas, where certain edge bundling techniques would provide user-desired results. Second, our system then computes a smooth and structural preserving transition between these specified areas. Lastly, the user can further fine-tune the global visualization with a direct manipulation technique to remove the local ambiguity and to apply different visual deformations. In this paper, we provide details for our design rationale and implementation. Also, we show how our algorithm gives more suitable results compared to current edge bundling techniques, and in the end, we provide concrete instances of usages, where the algorithm combines various edge bundling results to support diverse data exploration and visualizations.

[1]  Anita Graser,et al.  Untangling origin-destination flows in geographic information systems , 2019, Inf. Vis..

[2]  Christophe Hurter,et al.  Multidimensional Data Exploration by Explicitly Controlled Animation , 2017, Informatics.

[3]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[4]  Christophe Hurter,et al.  MoleView: An Attribute and Structure-Based Semantic Lens for Large Element-Based Plots , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Robert Strzodka,et al.  Generalized distance transforms and skeletons in graphics hardware , 2004, VISSYM'04.

[6]  Beryl Plimmer,et al.  Graph Drawing Aesthetics—Created by Users, Not Algorithms , 2012, IEEE Transactions on Visualization and Computer Graphics.

[7]  Alexandru Telea,et al.  CUBu: Universal Real-Time Bundling for Large Graphs , 2016, IEEE Transactions on Visualization and Computer Graphics.

[8]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[9]  Heidrun Schumann,et al.  A Survey on Interactive Lenses in Visualization , 2014, EuroVis.

[10]  Takayuki Itoh,et al.  Convergent drawing for mutually connected directed graphs , 2017, J. Vis. Lang. Comput..

[11]  Michael Burch,et al.  A Taxonomy and Survey of Dynamic Graph Visualization , 2017, Comput. Graph. Forum.

[12]  Christophe Hurter,et al.  Graph Bundling by Kernel Density Estimation , 2012, Comput. Graph. Forum.

[13]  Tobias Schreck,et al.  Interactive Regression Lens for Exploring Scatter Plots , 2017, Comput. Graph. Forum.

[14]  Ulrik Brandes,et al.  Untangling the Hairballs of Multi-Centered, Small-World Online Social Media Networks , 2015, J. Graph Algorithms Appl..

[15]  M. Jacomy,et al.  ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software , 2014, PloS one.

[16]  Jens Gerken,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006 .

[17]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[18]  Christophe Hurter,et al.  Functional Decomposition for Bundled Simplification of Trail Sets , 2018, IEEE Transactions on Visualization and Computer Graphics.

[19]  Christophe Hurter,et al.  Scalability Considerations for Multivariate Graph Visualization , 2013, Multivariate Network Visualization.

[20]  Raimund Dachselt,et al.  MultiLens: Fluent Interaction with Multi-Functional Multi-Touch Lenses for Information Visualization , 2016, ISS.

[21]  Jarke J. van Wijk,et al.  Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  B. Marx The Visual Display of Quantitative Information , 1985 .

[23]  Hanghang Tong,et al.  iSphere: Focus+Context Sphere Visualization for Interactive Large Graph Exploration , 2017, CHI.

[24]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[25]  Emden R. GansnerYifan Multilevel Agglomerative Edge Bundling for Visualizing Large Graphs , 2011 .

[26]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[27]  Christophe Hurter,et al.  Skeleton-Based Edge Bundling for Graph Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[28]  Kim Marriott,et al.  IPSep-CoLa: An Incremental Procedure for Separation Constraint Layout of Graphs , 2006, IEEE Transactions on Visualization and Computer Graphics.

[29]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[30]  Heinrich Müller,et al.  Improved Laplacian Smoothing of Noisy Surface Meshes , 1999, Comput. Graph. Forum.

[31]  Louis A. Hageman,et al.  Iterative Solution of Large Linear Systems. , 1971 .

[32]  M. Sheelagh T. Carpendale,et al.  Exploring the design space of interactive link curvature in network diagrams , 2012, AVI.

[33]  Heidrun Schumann,et al.  Interactive Lenses for Visualization: An Extended Survey , 2017, Comput. Graph. Forum.

[34]  Xin Liu,et al.  An Information-Theoretic Framework for Evaluating Edge Bundling Visualization , 2018, Entropy.

[35]  Christophe Hurter,et al.  Image-Based Visualization: Interactive Multidimensional Data Exploration , 2015, Image-Based Visualization: Interactive Multidimensional Data Exploration.

[36]  Romain Bourqui,et al.  Winding Roads: Routing edges into bundles , 2010, Comput. Graph. Forum.

[37]  Angus G. Forbes,et al.  CactusTree: A tree drawing approach for hierarchical edge bundling , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[38]  Christophe Hurter,et al.  Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[39]  Christophe Hurter,et al.  State of the Art in Edge and Trail Bundling Techniques , 2017, Comput. Graph. Forum.

[40]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[41]  D. Weiskopf Image-Based Edge Bundles: Simplified Visualization of Large Graphs , 2010 .

[42]  Peter Eades,et al.  Effects of Crossing Angles , 2008, 2008 IEEE Pacific Visualization Symposium.

[43]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[44]  Kwan-Liu Ma,et al.  Ambiguity-Free Edge-Bundling for Interactive Graph Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[45]  Christophe Hurter,et al.  Grooming the hairball - how to tidy up network visualizations? , 2013 .

[46]  Helen C. Purchase,et al.  Metrics for Graph Drawing Aesthetics , 2002, J. Vis. Lang. Comput..

[47]  Chi-Wing Fu,et al.  Revisiting Stress Majorization as a Unified Framework for Interactive Constrained Graph Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[48]  Christophe Hurter,et al.  FFTEB: Edge bundling of huge graphs by the Fast Fourier Transform , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[49]  Chi-Wing Fu,et al.  Structure-aware Fisheye Views for Efficient Large Graph Exploration , 2019, IEEE Transactions on Visualization and Computer Graphics.

[50]  Min Zhu,et al.  AmbiguityVis: Visualization of Ambiguity in Graph Layouts , 2016, IEEE Transactions on Visualization and Computer Graphics.

[51]  F. J. Newbery Edge concentration: a method for clustering directed graphs , 1989 .

[52]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[53]  Peter Eades,et al.  On the faithfulness of graph visualizations , 2012, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[54]  Christophe Hurter,et al.  Attribute-driven edge bundling for general graphs with applications in trail analysis , 2015, 2015 IEEE Pacific Visualization Symposium (PacificVis).

[55]  Paul Murray,et al.  A User Study of Techniques for Visualizing Structure and Connectivity in Hierarchical Datasets , 2017, VOILA@ISWC.

[56]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .