Optimal Control of Nonlocal Continuity Equations: Numerical Solution

[1]  H. Pham,et al.  Mean-field neural networks: Learning mappings on Wasserstein space , 2022, Neural Networks.

[2]  D. Khlopin,et al.  Pontryagin maximum principle for the deterministic mean field type optimal control problem via the Lagrangian approach , 2022, 2207.01892.

[3]  Spring Berman,et al.  Optimal Control of Velocity and Nonlocal Interactions in the Mean-Field Kuramoto Model , 2021, 2022 American Control Conference (ACC).

[4]  M. Fornasier,et al.  A measure theoretical approach to the mean-field maximum principle for training NeurODEs , 2021, Nonlinear Analysis.

[5]  Fernando Lobo Pereira,et al.  Feedback Maximum Principle for Ensemble Control of Local Continuity Equations: An Application to Supervised Machine Learning , 2021, IEEE Control Systems Letters.

[6]  H'elene Frankowska,et al.  Necessary Optimality Conditions for Optimal Control Problems in Wasserstein Spaces , 2021, Applied Mathematics & Optimization.

[7]  Giuseppe Savaré,et al.  Lagrangian, Eulerian and Kantorovich formulations of multi-agent optimal control problems: Equivalence and Gamma-convergence , 2020, Journal of Differential Equations.

[8]  Enrique Zuazua,et al.  Model predictive control with random batch methods for a guiding problem , 2020, Mathematical Models and Methods in Applied Sciences.

[9]  R. Schlögl particle , 2020, Catalysis from A to Z.

[10]  L. Szpruch,et al.  Mean-Field Neural ODEs via Relaxed Optimal Control , 2019, 1912.05475.

[11]  Francesco Rossi,et al.  Intrinsic Lipschitz Regularity of Mean-Field Optimal Controls , 2019, SIAM J. Control. Optim..

[12]  Maxim Staritsyn,et al.  Impulsive control of nonlocal transport equations , 2019, Journal of Differential Equations.

[13]  Martin Burger,et al.  Mean-Field Optimal Control and Optimality Conditions in the Space of Probability Measures , 2019, SIAM J. Control. Optim..

[14]  Benoît Bonnet A Pontryagin Maximum Principle in Wasserstein spaces for constrained optimal control problems , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[15]  Fabio S. Priuli,et al.  Generalized Control Systems in the Space of Probability Measures , 2018 .

[16]  Nikolay Pogodaev,et al.  Program strategies for a dynamic game in the space of measures , 2018, Optim. Lett..

[17]  E Weinan,et al.  A mean-field optimal control formulation of deep learning , 2018, Research in the Mathematical Sciences.

[18]  Y. Averboukh Viability Theorem for Deterministic Mean Field Type Control Systems , 2018, Set-Valued and Variational Analysis.

[19]  M. Fornasier,et al.  Mean-field optimal control as Gamma-limit of finite agent controls , 2018, European Journal of Applied Mathematics.

[20]  M. Quincampoix,et al.  Mayer control problem with probabilistic uncertainty on initial positions , 2018 .

[21]  C. Laing The Dynamics of Networks of Identical Theta Neurons , 2018, The Journal of Mathematical Neuroscience.

[22]  Yurii Averboukh,et al.  Krasovskii–Subbotin Approach to Mean Field Type Differential Games , 2018, Dynamic Games and Applications.

[23]  Francesco Rossi,et al.  The Pontryagin Maximum Principle in the Wasserstein Space , 2017, Calculus of Variations and Partial Differential Equations.

[24]  N. Pogodaev Numerical Algorithm for Optimal Control of Continuity Equations , 2017, 1708.05516.

[25]  Y. Averboukh Viability Theorem for Deterministic Mean Field Type Control Systems , 2016, 1701.00089.

[26]  P. Lions,et al.  The Master Equation and the Convergence Problem in Mean Field Games , 2015, 1509.02505.

[27]  N. Pogodaev Optimal control of continuity equations , 2015, 1506.08932.

[28]  Massimo Fornasier,et al.  Mean-Field Pontryagin Maximum Principle , 2015, J. Optim. Theory Appl..

[29]  Enrique Zuazua,et al.  Averaged control , 2014, Autom..

[30]  Massimo Fornasier,et al.  Mean-field sparse optimal control , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  M. Fornasier,et al.  Mean-Field Optimal Control , 2013, 1306.5913.

[32]  J. A. Carrillo,et al.  The derivation of swarming models: Mean-field limit and Wasserstein distances , 2013, 1304.5776.

[33]  R. Carmona,et al.  Forward-Backward Stochastic Differential Equations and Controlled McKean Vlasov Dynamics , 2013, 1303.5835.

[34]  B. Piccoli,et al.  Transport Equation with Nonlocal Velocity in Wasserstein Spaces: Convergence of Numerical Schemes , 2011, 1106.2555.

[35]  Benedetto Piccoli,et al.  Effects of anisotropic interactions on the structure of animal groups , 2009, Journal of mathematical biology.

[36]  V. Dykhta,et al.  Optimal control: Nonlocal conditions, computational methods, and the variational principle of maximum , 2009 .

[37]  M. Herty,et al.  Control of the Continuity Equation with a Non Local Flow , 2009, 0902.2623.

[38]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[39]  Monika Sharma,et al.  Chemical oscillations , 2006 .

[40]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[41]  C. Castaing,et al.  Young Measures on Topological Spaces: With Applications in Control Theory and Probability Theory , 2004 .

[42]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[43]  J. Boyd Chebyshev and Fourier Spectral Methods , 1989 .

[44]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[45]  C. Chou The Vlasov equations , 1965 .

[46]  Nikolai Ilich Pogodaev,et al.  Nonlocal balance equations with parameters in the space of signed measures , 2022, Sbornik: Mathematics.

[47]  Benedetto Piccoli,et al.  Measure-theoretic models for crowd dynamics , 2018 .

[48]  P. Cardaliaguet Analysis in the space of measures , 2018 .

[49]  Alfio Borzì,et al.  A Fokker-Planck control framework for multidimensional stochastic processes , 2013, J. Comput. Appl. Math..

[50]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[51]  Cédric Villani,et al.  Gradient flows I , 2009 .

[52]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[53]  Charles Castaing,et al.  Young Measures on Topological Spaces , 2004 .

[54]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[55]  J. Aubin Set-valued analysis , 1990 .

[56]  D. Wishart Introduction to the Mathematical Theory of Control Processes. Volume 1—Linear Equations and Quadratic Criteria , 1969 .