(2 + 1)-Dimensional Burgers equations BE(m + n + 1): Using the recursion operator

In this work, we develop a variety of (2+1)-dimensional Burgers equations BE(N) of distinct orders. We use the recursion operator of the Burgers equation to derive these equations. The obtained equations possess multiple kink solutions the same as the multiple kink solutions of the Burgers hierarchy, but differ only in the dispersion relations. We finally establish a generalization for the dispersion relations.

[1]  Jing Ping Wang A List of 1+1 Dimensional Integrable Equations and Their Properties , 2002 .

[2]  Abdul-Majid Wazwaz,et al.  Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation , 2008, Appl. Math. Comput..

[3]  A. Wazwaz,et al.  Multiple-soliton solutions for coupled KdV and coupled KP systems , 2009 .

[4]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the KP equation by Hirota's bilinear method and by the tanh-coth method , 2007, Appl. Math. Comput..

[5]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[6]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Boussinesq equation , 2007, Appl. Math. Comput..

[7]  Willy Hereman,et al.  A symbolic algorithm for computing recursion operators of nonlinear partial differential equations , 2009, Int. J. Comput. Math..

[8]  Chaudry Masood Khalique,et al.  Exact solutions and conservation laws of Zakharov–Kuznetsov modified equal width equation with power law nonlinearity , 2012 .

[9]  Athanassios S. Fokas,et al.  Symmetries and Integrability , 1987 .

[10]  Abdul-Majid Wazwaz Burgers hierarchy: Multiple kink solutions and multiple singular kink solutions , 2010, J. Frankl. Inst..

[11]  Abdul-Majid Wazwaz (2+1)-Dimensional mKdV (N) equations by the mKdV recursion operator: Multiple soliton and multiple singular soliton solutions , 2012, Appl. Math. Comput..

[12]  Peter J. Olver,et al.  Evolution equations possessing infinitely many symmetries , 1977 .

[13]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .

[14]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[15]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[16]  Optical solitons with power law nonlinearity using Lie group analysis , 2009 .

[17]  Abdul-Majid Wazwaz,et al.  The integrable KdV6 equations: Multiple soliton solutions and multiple singular soliton solutions , 2008, Appl. Math. Comput..

[18]  Abdul-Majid Wazwaz,et al.  Multiple-soliton solutions for the Lax-Kadomtsev-Petviashvili (Lax-KP) equation , 2008, Appl. Math. Comput..

[19]  A. Wazwaz Multiple soliton solutions for a (2 + 1)-dimensional integrable KdV6 equation , 2010 .

[20]  A. Wazwaz The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-Ito seventh-order equation , 2008, Appl. Math. Comput..

[21]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .