Residual stresses are inherent in thermal spray coatings because the application process involves large temperature gradients in materials with different mechanical properties. In many cases, failure analysis of thermal spray coatings has indicated that residual stresses contribute to reduced service life. An estab-lished method for experimentally evaluating residual stresses involves monitoring deformations in a part as layers of material are removed. Although the method offers several advantages, applications are lim-ited to a single isotropic material and do not include coated materials. This paper describes a modified layer-removal method for evaluating through-thickness residual stress distributions in coated materials. The modification is validated by comparisons with three-dimensional finite-element analysis results. The modified layer-removal method was applied to determine through-thickness residual stress distributions for six industrial thermal spray coatings: stainless steel, aluminum, Ni-5A1, two tungsten carbides, and a ceramic thermal barrier coating. The modified method requires only ordinary resistance strain-gage measuring equipment and can be relatively insensitive to uncertainties in the mechanical properties of the coating material.
[1]
E. Rybicki,et al.
An LEFM Analysis for the Effects of Weld-Repair-Induced Residual Stresses on the Fracture of the HSST ITV-8 Vessel
,
1980
.
[2]
Jian Lu,et al.
Thermal shock resistance of TiC coatings plasma sprayed onto macroroughened substrates
,
1992
.
[3]
E. F. Rybicki,et al.
Application guidelines for the parting out step in a through thickness residual stress measurement procedure
,
1987
.
[4]
Kenneth G. Budinski,et al.
Surface engineering for wear resistance
,
1988
.
[5]
H. Reiter,et al.
Residual stresses in ZrO2-8%Y2O3 plasma-sprayed thermal barrier coatings
,
1988
.