Parameter Optimization Algorithms for Evolving Rule Models Applied to Freshwater Ecosystems

Predictive rule models for early warning of cyanobacterial blooms in freshwater ecosystems were developed using a hybrid evolutionary algorithm (HEA). The HEA has been designed to evolve IF-THEN-ELSE model structures using genetic programming and to optimize the stochastical constants contained in the model using population-based algorithms. This paper intensively investigates the performances of the following six alternative population-based algorithms for parameter optimization (PO) of rule models within this hybrid methodology: 1) hill climbing (HC); 2) simulated annealing (SA); 3) genetic algorithm (GA); 4) differential evolution (DE); 5) covariance matrix adaptation evolution strategy (CMA-ES); and 6) estimation of distribution algorithm (EDA). The comparative study was carried out by predictive modeling of chlorophyll-a concentrations and the potentially toxic cyanobacterium Cylindrospermopsis raciborskii cell concentrations based on water quality time-series data in Lake Wivenhoe, Queensland, Australia, from 1998 to 2009. The experimental results demonstrate that with these PO methods, the rule models discovered by the HEA proved to be both predictive and explanatory whose IF condition indicates threshold values for some crucial water quality parameters. When comparing different PO algorithms, HC always performed best followed by DE, GA, and EDA, while CMA-ES performed worst and the performance of SA varied with different data sets.

[1]  Introduction to Evolutionary Algorithms June 26 , 2014 1 Darwinian Evolution In 1789 , 2014 .

[2]  P. Bosman,et al.  Adapted Maximum-Likelihood Gaussian Models for Numerical Optimization with Continuous EDAs , 2007 .

[3]  Lishan Kang,et al.  A new approach to the estimation of electrocrystallization parameters , 1999 .

[4]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[5]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[6]  Grünwald,et al.  Model Selection Based on Minimum Description Length. , 2000, Journal of mathematical psychology.

[7]  Barry T. Hart,et al.  Algal blooms in the Darling-Barwon River, Australia , 1997 .

[8]  Anna Kucerová,et al.  Improvements of real coded genetic algorithms based on differential operators preventing premature convergence , 2004, ArXiv.

[9]  Sarah M. Lennox,et al.  Evaluation of quantitative real-time PCR to characterise spatial and temporal variations in cyanobacteria, Cylindrospermopsis raciborskii (Woloszynska) Seenaya et Subba Raju and cylindrospermopsin concentrations in three subtropical Australian reservoirs , 2010 .

[10]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[11]  G. Evans,et al.  The Use of Optimization Techniques to Model Marine Ecosystem Dynamics at the JGOFS Station at 47 degrees N 20 degrees W [and Discussion] , 1995 .

[12]  Peter A. Whigham,et al.  Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes , 2002 .

[13]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[14]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[15]  R. Murnane,et al.  Determination of thorium and particulate matter cycling parameters at station P: A reanalysis and comparison of least squares techniques , 1994 .

[16]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[17]  S. Shumway A Review of the Effects of Algal Blooms on Shellfish and Aquaculture , 1989 .

[18]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[19]  Thomas Bäck,et al.  Evolutionary computation: comments on the history and current state , 1997, IEEE Trans. Evol. Comput..

[20]  Hans-Georg Beyer,et al.  Qualms Regarding the Optimality of Cumulative Path Length Control in CSA/CMA-Evolution Strategies , 2003, Evolutionary Computation.

[21]  R. Storn,et al.  On the usage of differential evolution for function optimization , 1996, Proceedings of North American Fuzzy Information Processing.

[22]  Daniele Loiacono,et al.  Prediction update algorithms for XCSF: RLS, Kalman filter, and gain adaptation , 2006, GECCO '06.

[23]  S. Marsili-Libelli,et al.  Water quality modelling for small river basins , 2008, Environ. Model. Softw..

[24]  Simon J. Pittman,et al.  Short-term consequences of a benthic cyanobacterial bloom ( Lyngbya majuscula Gomont) for fish and penaeid prawns in Moreton Bay (Queensland, Australia) , 2005 .

[25]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[26]  Thomas Bck Introduction to evolutionary algorithms , 2000 .

[27]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[28]  Gustaaf M. Hallegraeff,et al.  Harmful algal blooms in the Australian region , 1992 .

[29]  Richard J. Matear,et al.  Parameter optimization and analysis of ecosystem models using simulated annealing: a case study at Station P , 1995 .

[30]  Pei Hongping,et al.  Study on the algal dynamic model for West Lake, Hangzhou , 2002 .

[31]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[32]  T. Maekawa,et al.  Use of artificial neural network in the prediction of algal blooms. , 2001, Water research.

[33]  V. Echevin,et al.  Assimilation of surface data in a one-dimensional physical-biogeochemical model of the surface ocean , 1996 .

[34]  Richard J. Matear,et al.  Modeling the inorganic phosphorus cycle of the North Pacific using an adjoint data assimilation model to assess the role of dissolved organic phosphorus , 1995 .

[35]  G. Evans,et al.  The role of local models and data sets in the Joint Global Ocean Flux Study , 1999 .

[36]  Gary B. Fogel,et al.  Derivation of quantitative structure-toxicity relationships for ecotoxicological effects of organic chemicals: evolving neural networks and evolving rules , 2005, 2005 IEEE Congress on Evolutionary Computation.

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[39]  Qiuwen Chen,et al.  Integration of data mining techniques and heuristic knowledge in fuzzy logic modelling of eutrophication in Taihu Lake , 2003 .

[40]  Friedrich Recknagel,et al.  Hybrid Evolutionary Algorithm for Rule Set Discovery in Time-Series Data to Forecast and Explain Algal Population Dynamics in Two Lakes Different in Morphometry and Eutrophication , 2006 .

[41]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[42]  Pedro Larrañaga,et al.  A Review on Estimation of Distribution Algorithms , 2002, Estimation of Distribution Algorithms.

[43]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[44]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[45]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[46]  George C. Hurtt,et al.  A pelagic ecosystem model calibrated with BATS and OWSI data , 1999 .

[47]  Richard A. Park,et al.  A generalized model for simulating lake ecosystems , 1974 .

[48]  Zbigniew Michalewicz,et al.  Evolutionary Computation 2 : Advanced Algorithms and Operators , 2000 .

[49]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[50]  F. Recknagel,et al.  Artificial neural network approach for modelling and prediction of algal blooms , 1997 .

[51]  Holger R. Maier,et al.  Forecasting cyanobacterium Anabaena spp. in the River Murray, South Australia, using B-spline neurofuzzy models , 2001 .

[52]  J. Vallino Improving marine ecosystem models: Use of data assimilation and mesocosm experiments , 2000 .