Initiation of shear bands near a stress concentration in metallic glass

Abstract Instrumented contact experiments are performed on three metallic glasses to systematically study shear band formation near a stress concentration. The results suggest that high local stresses at a point in the glass are insufficient to initiate a shear band. Rather, the yield strength must be exceeded along the entire length of a viable shear path in order for a shear band to form. Because of this, conventional analyses to extract shear yield stresses from Hertzian contact experiments overestimate the glass strength by a factor of three or more. In contrast, the interpretation of shear band initiation as yield on a plane agrees with recent experimental observations on metallic glasses that pertain to the slip-line field, and can rationalize the experimental contact load measurements as well as the shear band path.

[1]  T. Michalske,et al.  Dislocation nucleation at nano-scale mechanical contacts , 1998 .

[2]  P. Donovan A yield criterion for Pd40Ni40P20 metallic glass , 1989 .

[3]  K. Jacobsen,et al.  Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses , 2006 .

[4]  J. Michler,et al.  Discrete deformation in amorphous metals: an in situ SEM indentation study , 2006 .

[5]  A. Argon Mechanisms of inelastic deformation in metallic glasses , 1982 .

[6]  H. Bei,et al.  Softening caused by profuse shear banding in a bulk metallic glass. , 2006, Physical review letters.

[7]  W. Nix,et al.  Localized heating during serrated plastic flow in bulk metallic glasses , 2001 .

[8]  C. Schuh,et al.  Yield surface of a simulated metallic glass , 2003 .

[9]  C. Schuh,et al.  The Mohr–Coulomb criterion from unit shear processes in metallic glass , 2004 .

[10]  C. Su,et al.  A theory for amorphous viscoplastic materials undergoing finite deformations, with application to metallic glasses , 2005 .

[11]  David F. Bahr,et al.  Energy considerations regarding yield points during indentation , 1999 .

[12]  High resolution transmission electron microscopy study of interfaces , 1992 .

[13]  Jianfei Sun,et al.  Mechanical performance and fracture behavior of Fe_41Co_7Cr_15Mo_14Y_2C_15B_6 bulk metallic glass , 2007 .

[14]  D. Bahr,et al.  Effect of solid solution impurities on dislocation nucleation during nanoindentation , 2005 .

[15]  Ju Li,et al.  Yield point of metallic glass , 2006 .

[16]  T. Nieh,et al.  Evaluating abrasive wear of amorphous alloys using nanoscratch technique , 2004 .

[17]  Robert J. Dowding,et al.  Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation , 2005 .

[18]  Saumyadeep Jana,et al.  Hardness and plastic deformation in a bulk metallic glass , 2005 .

[19]  M. Ashby,et al.  Metallic glasses as structural materials , 2006 .

[20]  W. Nix,et al.  Deformation Mechanisms of the Zr40Ti14Ni10Cu12Be24 Bulk Metallic Glass , 2001 .

[21]  Jan Schroers,et al.  Ductile bulk metallic glass. , 2004, Physical review letters.

[22]  C. Schuh,et al.  Determining the activation energy and volume for the onset of plasticity during nanoindentation , 2006 .

[23]  J. Lewandowski,et al.  Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal , 2002 .

[24]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[25]  C. Hanhart,et al.  Investigation of a , 2008 .

[26]  Weihua Wang,et al.  Correlations between elastic moduli and properties in bulk metallic glasses , 2006 .

[27]  J. Eckert,et al.  "Work-Hardenable" ductile bulk metallic glass. , 2005, Physical review letters.

[28]  S. Suresh,et al.  Nano-indentation of copper thin films on silicon substrates , 1999 .

[29]  A. Argon Plastic deformation in metallic glasses , 1979 .

[30]  V. Keryvin Indentation of bulk metallic glasses: Relationships between shear bands observed around the prints and hardness , 2007 .

[31]  A. L. Greer,et al.  Thickness of shear bands in metallic glasses , 2006 .

[32]  U. Ramamurty,et al.  Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass , 2004 .

[33]  William L. Johnson,et al.  In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite , 2001 .

[34]  A. Fischer-Cripps,et al.  Introduction to Contact Mechanics , 2000 .

[35]  D. Buckley,et al.  Mechanical-contact-induced transformation from the amorphous to the partially crystalline state in metallic glass , 1984 .

[36]  T. Nieh,et al.  Dynamic response of a Pd40Ni40P20 bulk metallic glass in tension , 2002 .

[37]  S. Biner,et al.  Deformation behavior of a zirconium based metallic glass during cylindrical indentation: in situ observations , 2005 .

[38]  C. Su,et al.  Plane strain indentation of a Zr-based metallic glass: Experiments and numerical simulation , 2006 .

[39]  W. Jiang,et al.  The effect of compression and tension on shear-band structure and nanocrystallization in amorphous Al90Fe5Gd5: a high-resolution transmission electron microscopy study , 2003 .

[40]  C. Schuh,et al.  Incipient plasticity during nanoindentation at elevated temperatures , 2004 .

[41]  Jing Li,et al.  Nanometre-scale defects in shear bands in a metallic glass , 2002 .

[42]  A. Yavari,et al.  Unusual room-temperature compressive plasticity in nanocrystal-toughened bulk copper-zirconium glass , 2005 .

[43]  John W. Hutchinson,et al.  Strain localization in amorphous metals , 1982 .

[44]  S. Takayama Drawing of Pd77.5Cu6Si16.5 metallic glass wires , 1979 .

[45]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[46]  Hays,et al.  Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions , 2000, Physical review letters.

[47]  K. T. Ramesh,et al.  Yield criteria and strain-rate behavior of Zr57.4Cu16.4Ni8.2Ta8Al10 metallic-glass-matrix composites , 2006 .

[48]  R. Dauskardt,et al.  Enhanced Toughness Due to Stable Crack Tip Damage Zones in Bulk Metallic Glass , 1999 .

[49]  B. Bhushan Handbook of micro/nano tribology , 1995 .

[50]  C. Schuh,et al.  Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation , 2004 .

[51]  K. Lu,et al.  Deformation behavior of Ni3Al single crystals during nanoindentation , 2003 .

[52]  T. Nieh,et al.  Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass , 2002 .

[53]  Bulent S. Biner,et al.  Experimental observations of deformation behavior of bulk metallic glasses during wedge-like cylindrical indentation , 2007 .

[54]  T. Hufnagel,et al.  Metallic glass matrix composite with precipitated ductile reinforcement , 2002 .

[55]  Turnbull,et al.  Elastic behavior and vibrational anharmonicity of a bulk Pd40Ni40P20 metallic glass. , 1986, Physical review. B, Condensed matter.

[56]  Reinhold H. Dauskardt,et al.  Local heating associated with crack tip plasticity in Zr–Ti–Ni–Cu–Be bulk amorphous metals , 1999 .

[57]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[58]  K. T. Ramesh,et al.  Micromechanics of deformation of metallic-glass-matrix composites from in situ synchrotron strain measurements and finite element modeling , 2005 .

[59]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[60]  H. Bei,et al.  Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. , 2004, Physical review letters.

[61]  Effects of pressure sensitivity and notch geometry on notch-tip fields , 1998 .

[62]  Mo Li,et al.  Atomic scale characterization of shear bands in an amorphous metal , 2006 .

[63]  M. Denda,et al.  Dynamic evolution of nanoscale shear bands in a bulk-metallic glass , 2005 .

[64]  J. Michler,et al.  Observation of Instabilities during Plastic Deformation by in‐situ SEM Indentation Experiments , 2005 .

[65]  U. Ramamurty,et al.  Spherical indentation response of metallic glasses , 2004 .

[66]  L. Edwards,et al.  Fracture and fatigue crack propagation in a nickel-base metallic glass , 1989 .

[67]  L. Qiao,et al.  In situ SEM study of formation and growth of shear bands and microcracks in bulk metallic glasses , 2003 .

[68]  J. Langer Shear-transformation-zone theory of deformation in metallic glasses , 2006 .

[69]  Strain localization and percolation of stable structure in amorphous solids. , 2005, Physical review letters.

[70]  Christopher A. Schuh,et al.  A nanoindentation study of serrated flow in bulk metallic glasses , 2003 .

[71]  Kishore,et al.  On the wear mechanism of iron and nickel based transition metal-metalloid metallic glasses , 1987 .

[72]  S. Poon,et al.  Critical Poisson’s ratio for plasticity in Fe–Mo–C–B–Ln bulk amorphous steel , 2006 .

[73]  Yat Li,et al.  Contributions to the homogeneous plastic flow of in situ metallic glass matrix composites , 2005 .

[74]  J. Eckert,et al.  Fracture mechanisms in bulk metallic glassy materials. , 2003, Physical review letters.

[75]  Jing Li,et al.  Controlling shear band behavior in metallic glasses through microstructural design , 2002 .

[76]  W. Wang,et al.  Reflections on the Third UEF Conference on Bulk Metallic Glasses , 2004 .

[77]  Weihua Wang,et al.  Intrinsic plasticity or brittleness of metallic glasses , 2005 .

[78]  J. Michler,et al.  Investigation of wear mechanisms through in situ observation during microscratching inside the scanning electron microscope , 2005 .

[79]  A. Rosakis,et al.  On the growth of shear bands and failure-mode transition in prenotched plates: A comparison of singly and doubly notched specimens , 1998 .

[80]  E. Lavernia,et al.  Shear band formation and ductility in bulk metallic glass , 2005 .

[81]  J. Lewandowski,et al.  Intrinsic and Extrinsic Toughening of Metallic Glasses , 2006 .

[82]  W. Stobbs,et al.  The structure of shear bands in metallic glasses , 1981 .

[83]  G. Wang,et al.  Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy , 2005 .

[84]  Yat Li,et al.  Mechanical properties of metallic glass matrix composites: Effects of reinforcement character and connectivity , 2007 .

[85]  J. Lewandowski,et al.  Local temperature rises during mechanical testing of metallic glasses , 2007 .

[86]  Christopher A. Schuh,et al.  A survey of instrumented indentation studies on metallic glasses , 2004 .

[87]  Wei Zhang,et al.  Shear delocalization and crack blunting of a metallic glass containing nanoparticles: In situ deformation in TEM analysis , 2006 .

[88]  J. Lewandowski,et al.  Fracture toughness and notched toughness of bulk amorphous alloy: Zr-Ti-Ni-Cu-Be , 1998 .

[89]  Jwo Pan,et al.  Slip lines in front of a round notch tip in a pressure-sensitive material , 1994 .