Eutectoid-structured WC/W2C heterostructures: A new platform for long-term alkaline hydrogen evolution reaction at low overpotentials

[1]  Zhigang Chen,et al.  Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction electrocatalyst with ultrahigh mass activity , 2019, Nano Energy.

[2]  Yuanfu Chen,et al.  Scalable Synthesis of Heterogeneous W–W2C Nanoparticle-Embedded CNT Networks for Boosted Hydrogen Evolution Reaction in Both Acidic and Alkaline Media , 2019, ACS Sustainable Chemistry & Engineering.

[3]  Qingsheng Gao,et al.  Bimetallic Ni2-xCoxP/N-doped carbon nanofibers: Solid-solution-alloy engineering toward efficient hydrogen evolution , 2019, Applied Catalysis B: Environmental.

[4]  Lichun Yang,et al.  Structural Design and Electronic Modulation of Transition‐Metal‐Carbide Electrocatalysts toward Efficient Hydrogen Evolution , 2018, Advanced materials.

[5]  Yadong Li,et al.  Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction , 2018, Nature Catalysis.

[6]  S. Dou,et al.  Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review , 2018, Advanced Functional Materials.

[7]  Kun Feng,et al.  Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst , 2018 .

[8]  S. Khan,et al.  Ultrafine cable-like WC/W2C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution , 2018 .

[9]  Qinghua Zhang,et al.  Phase Modulation of (1T‐2H)‐MoSe2/TiC‐C Shell/Core Arrays via Nitrogen Doping for Highly Efficient Hydrogen Evolution Reaction , 2018, Advanced materials.

[10]  Shuhong Yu,et al.  Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis , 2018, Nature Communications.

[11]  Yadong Li,et al.  Single Tungsten Atoms Supported on MOF‐Derived N‐Doped Carbon for Robust Electrochemical Hydrogen Evolution , 2018, Advanced materials.

[12]  Yong Wang,et al.  Transition Metal Induced the Contraction of Tungsten Carbide Lattice as Superior Hydrogen Evolution Reaction Catalyst. , 2018, ACS applied materials & interfaces.

[13]  Shaojun Guo,et al.  Atomic‐Scale Core/Shell Structure Engineering Induces Precise Tensile Strain to Boost Hydrogen Evolution Catalysis , 2018, Advanced materials.

[14]  W. Goddard,et al.  Defect-enriched iron fluoride-oxide nanoporous thin films bifunctional catalyst for water splitting , 2018, Nature Communications.

[15]  Min Han,et al.  Defect‐Rich Ni3FeN Nanocrystals Anchored on N‐Doped Graphene for Enhanced Electrocatalytic Oxygen Evolution , 2018 .

[16]  Hua Zhang,et al.  In Situ Grown Epitaxial Heterojunction Exhibits High‐Performance Electrocatalytic Water Splitting , 2018, Advanced materials.

[17]  N. Ravishankar,et al.  Ultrathin Au-Alloy Nanowires at the Liquid-Liquid Interface. , 2018, Nano letters.

[18]  M. Jaroniec,et al.  Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering , 2017, Nature Communications.

[19]  D. Kumar,et al.  Tribo-mechanical properties of reactive magnetron sputtered transition metal carbide coatings , 2017 .

[20]  Yanjie Hu,et al.  Mo‐Based Ultrasmall Nanoparticles on Hierarchical Carbon Nanosheets for Superior Lithium Ion Storage and Hydrogen Generation Catalysis , 2017 .

[21]  Abdullah M. Asiri,et al.  Enhanced Electrocatalysis for Energy‐Efficient Hydrogen Production over CoP Catalyst with Nonelectroactive Zn as a Promoter , 2017 .

[22]  Jia Liu,et al.  Interface engineering: The Ni(OH)2/MoS2 heterostructure for highly efficient alkaline hydrogen evolution , 2017 .

[23]  H. Cui,et al.  Novel porous tungsten carbide hybrid nanowires on carbon cloth for high-performance hydrogen evolution , 2017 .

[24]  Yadong Li,et al.  Cage-Confinement Pyrolysis Route to Ultrasmall Tungsten Carbide Nanoparticles for Efficient Electrocatalytic Hydrogen Evolution. , 2017, Journal of the American Chemical Society.

[25]  D. Jeong,et al.  Tungsten carbide nanowalls as electrocatalyst for hydrogen evolution reaction: New approach to durability issue , 2017 .

[26]  Fan Xu,et al.  Non‐Noble Metal‐based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications , 2017, Advanced materials.

[27]  Tao Zhang,et al.  2D WC single crystal embedded in graphene for enhancing hydrogen evolution reaction , 2017 .

[28]  Wei-Ting Chen,et al.  Indentation-induced deformation mechanisms in laser-processed directionally solidified WC–W2C eutectoids , 2017, Journal of Materials Science.

[29]  Boštjan Genorio,et al.  Design principles for hydrogen evolution reaction catalyst materials , 2016 .

[30]  D. Biermann,et al.  Indication of worn WC/C surface locations of a dry-running twin-screw rotor by the oxygen incorporation in tungsten-related Raman modes , 2016 .

[31]  Paul N. Duchesne,et al.  Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution , 2016, Nature Communications.

[32]  Weijia Zhou,et al.  Recent developments of carbon-based electrocatalysts for hydrogen evolution reaction , 2016 .

[33]  R. White,et al.  Directionally Solidified Boride and Carbide Eutectic Ceramics , 2016 .

[34]  Wei-Ting Chen,et al.  Crystallographic orientation relationships and interfaces in laser-processed directionally solidified WC–W2C eutectoid ceramics , 2016, Journal of Materials Science.

[35]  Abdullah M. Asiri,et al.  Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting , 2016, Advanced materials.

[36]  Hanqing Yu,et al.  Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction , 2015, Nature Communications.

[37]  Xiujun Fan,et al.  WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction. , 2015, ACS nano.

[38]  X. Lou,et al.  Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production , 2015, Nature Communications.

[39]  Song Jin,et al.  High-performance electrocatalysis using metallic cobalt pyrite (CoS₂) micro- and nanostructures. , 2014, Journal of the American Chemical Society.

[40]  Yuriy Román-Leshkov,et al.  Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis. , 2014, Angewandte Chemie.

[41]  D. Smirnov,et al.  New First Order Raman-active Modes in Few Layered Transition Metal Dichalcogenides , 2014, Scientific Reports.

[42]  B. B. Nayak,et al.  Preparation of WC–W2C composites by arc plasma melting and their characterisations , 2013 .

[43]  M. Reuter,et al.  Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. , 2012, ACS Nano.

[44]  Maria Chan,et al.  Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. , 2012, Nature materials.

[45]  J. C. Sánchez-López,et al.  Identification of the wear mechanism on WC/C nanostructured coatings , 2011 .

[46]  Xiuliang Ma,et al.  Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure , 2010 .

[47]  J. S. Lee,et al.  Transition Metal Carbides and Nitrides as Electrode Materials for Low Temperature Fuel Cells , 2009 .

[48]  M. Laguna-Bercero,et al.  Stability of Channeled Ni–YSZ Cermets Produced from Self‐Assembled NiO–YSZ Directionally Solidified Eutectics , 2005 .

[49]  Jingguang G. Chen,et al.  Surface science and electrochemical studies of WC and W2C PVD films as potential electrocatalysts , 2005 .