Changes in intraocular lens surface roughness during cataract surgery assessed by atomic force microscopy

[1]  M. Lombardo,et al.  Surface roughness of intraocular lenses with different dioptric powers assessed by atomic force microscopy , 2010, Journal of cataract and refractive surgery.

[2]  M. A. Mahr,et al.  Acrylic intraocular lens damage after folding using a forceps insertion technique , 2010, Journal of cataract and refractive surgery.

[3]  Riccardo Barberi,et al.  Analysis of intraocular lens surface adhesiveness by atomic force microscopy , 2009, Journal of cataract and refractive surgery.

[4]  M. Lombardo,et al.  Analysis of intraocular lens surface properties with atomic force microscopy , 2006, Journal of cataract and refractive surgery.

[5]  M. Lombardo,et al.  Roughness of excimer laser ablated corneas with and without smoothing measured with atomic force microscopy. , 2005, Journal of refractive surgery.

[6]  O. Nishi,et al.  Effect of intraocular lenses on preventing posterior capsule opacification: Design versus material , 2004, Journal of cataract and refractive surgery.

[7]  J. Davison Neodymium:YAG laser posterior capsulotomy after implantation of AcrySof intraocular lenses , 2004, Journal of cataract and refractive surgery.

[8]  S. Saika Relationship between posterior capsule opacification and intraocular lens biocompatibility , 2004, Progress in Retinal and Eye Research.

[9]  C. Zetterström,et al.  Posterior capsule opacification: Comparison of 3 intraocular lenses of different materials and design , 2003, Journal of cataract and refractive surgery.

[10]  Masahiko Usui,et al.  Surface roughness of intraocular lenses and inflammatory cell adhesion to lens surfaces , 2003, Journal of cataract and refractive surgery.

[11]  S. Sacu,et al.  Effect of a silicone intraocular lens with a sharp posterior optic edge on posterior capsule opacification , 2002, Journal of cataract and refractive surgery.

[12]  S. Sacu,et al.  Effect of an acrylic intraocular lens with a sharp posterior optic edge on posterior capsule opacification , 2002, Journal of cataract and refractive surgery.

[13]  A. Kruger,et al.  Uveal and capsular biocompatibility of 2 foldable acrylic intraocular lenses in patients with uveitis or pseudoexfoliation syndrome: Comparison to a control group , 2002, Journal of cataract and refractive surgery.

[14]  G. Ravalico,et al.  Biocompatibility of hydrophilic intraocular lenses , 2002, Journal of cataract and refractive surgery.

[15]  D. Kurosaka,et al.  Inhibition of Lens Epithelial Cell Migration by an Acrylic Intraocular Lens in vitro , 2002, Ophthalmic Research.

[16]  Y. Ohnishi,et al.  Evaluation of cellular adhesions on silicone and poly(methyl methacrylate) intraocular lenses in monkey eyes: An electron microscopic study , 2001, Journal of cataract and refractive surgery.

[17]  D. Kurosaka,et al.  Membranous proliferation of lens epithelial cells on acrylic, silicone, and poly(methyl methacrylate) lenses , 2001, Journal of cataract and refractive surgery.

[18]  C. Faschinger Surface abnormalities on hydrophilic acrylic intraocular lenses implanted by an injector , 2001, Journal of cataract and refractive surgery.

[19]  A. Lloyd,et al.  Ocular biomaterials and implants. , 2001, Biomaterials.

[20]  D. Apple,et al.  Eradication of posterior capsule opacification: documentation of a marked decrease in Nd:YAG laser posterior capsulotomy rates noted in an analysis of 5416 pseudophakic human eyes obtained postmortem. , 2001, Ophthalmology.

[21]  K. Nakamae,et al.  Optical and atomic force microscopy of an explanted AcrySof intraocular lens with glistenings , 2000, Journal of cataract and refractive surgery.

[22]  P. Versura,et al.  Adhesion mechanisms of human lens epithelial cells on 4 intraocular lens materials. , 1999, Journal of cataract and refractive surgery.

[23]  E. Hollick,et al.  Lens epithelial cell regression on the posterior capsule with different intraocular lens materials , 1998, The British journal of ophthalmology.

[24]  T. Oshika,et al.  Adhesion of lens capsule to intraocular lenses of polymethylmethacrylate, silicone, and acrylic foldable materials: an experimental study , 1998, The British journal of ophthalmology.

[25]  E. Goldberg,et al.  Examination of contact lens surfaces by Atomic Force Microscope (AFM). , 1997, The CLAO journal : official publication of the Contact Lens Association of Ophthalmologists, Inc.

[26]  D. Spalton,et al.  Comparison of the postoperative inflammatory response in the normal eye with heparin‐surface‐modified and poly(methyl methacrylate) intraocular lenses , 1995, Journal of cataract and refractive surgery.

[27]  M. Lombardo,et al.  Atomic force microscopy analysis of normal and photoablated porcine corneas. , 2006, Journal of biomechanics.

[28]  S. Sacu,et al.  Effect of optic material on posterior capsule opacification in intraocular lenses with sharp-edge optics: randomized clinical trial. , 2005, Ophthalmology.

[29]  K. P. Rao,et al.  PREPARATION, CHARACTERISATION AND FABRICATION OF INTRAOCULAR LENS FROM PHOTO INITIATED POLYMERISED POLY (METHYL METHACRYLATE) , 2004 .

[30]  S. Barman,et al.  The effect of polymethylmethacrylate, silicone, and polyacrylic intraocular lenses on posterior capsular opacification 3 years after cataract surgery. , 1999, Ophthalmology.

[31]  D. Koch,et al.  Scanning electron microscopic analysis of foldable acrylic and hydrogel intraocular lenses , 1996, Journal of cataract and refractive surgery.