Abundances and chemical stratification analysis in the atmosphere of Cr-type Ap star HD 204411

We present results of an abundance and stratification analysis of the weakly magnetic chemically peculiar star HD 204411 based on the echelle spectrum obtained with the high resolution spectrograph at the 3.55-m Telescopio Nazionale Galileo at the Observatorio del Roque de los Muchachos (La Palma, Spain). Atmospheric parameters obtained from the spec- troscopy and spectrophotometry together with the Hipparcos parallax show that this star has already left the Main Sequence band. The upper limit for the surface magnetic field derived from the differential broadening of the spectral lines with different magnetic sensitivity is 750 G, which agrees with the recent detection of the weak effective magnetic field in this star. The best fit to the observed spectral line profiles was obtained with a combination of the rotational velocity ve sin i = 5.4 km s −1 and the radial-tangential macroturbulence of 4.8 km s −1 . The average abundances of HD 204411 are typical for an Ap star of the Cr-type: C and O are deficient, Cr and Fe are strongly overabundant. Sr, Y, Zr and the rare-earths, which usually have large overabundances in cool Ap stars with strong magnetic fields, are either normal (Y, Ce) or only +0.5 dex overabundant in the weakly magnetic star HD 204411. The chemical stratification analysis was performed for 5 elements, Mg, Si, Ca, Cr and Fe. Si, Ca and Fe show a tendency to be concentrated below log τ5000 = −1, while for Mg we found marginal evidence for concentration in the upper atmosphere. This behaviour of Mg may be an artifact caused by the limited sample of spectral lines and poor atomic data available for the Mg  lines used in our analysis. Chromium, the most anomalous Fe-peak element, does not show significant abundance gradients in the line-forming region.

[1]  D. Lambert,et al.  Carbon, nitrogen, and oxygen abundances in the chemically peculiar stars of the upper main sequence , 1987 .

[2]  Doug Tody,et al.  The Iraf Data Reduction And Analysis System , 1986, Astronomical Telescopes and Instrumentation.

[3]  M. Dworetsky,et al.  Grids for the determination of effective temperature and surface gravity of B, A and F stars using uvby-beta photometry , 1985 .

[4]  W. Sargent,et al.  An analysis of the peculiar A star HD 204411 , 1969 .

[5]  Precision measurement of relative oscillator strengths – VIII. Measures of Fe I transitions from levels a3F2–4 (1.49–1.61 eV) with an accuracy of 1 per cent , 1979 .

[6]  R. Lincke,et al.  Messung von Oszillatorenstärken im Singulettsystem des neutralen Magnesiums , 1971 .

[7]  F. Leone,et al.  Magnetic intensification of spectral lines , 2003 .

[8]  N. Grevesse,et al.  Standard Solar Composition , 1998 .

[9]  F. Kupka,et al.  Model Atmospheres with Individualized Abundances , 2001 .

[10]  D. Bord Ab initio calculations of oscillator strengths and Landé factors for Nd III , 2000 .

[11]  F. Kupka,et al.  The 5200-Å flux depression of chemically peculiar stars – II. The cool chemically peculiar and λ Bootis stars , 2004 .

[12]  H. W. Babcock Magnetic Intensification of Stellar Absorption Lines. , 1949 .

[13]  É. Biémont,et al.  Theoretical Lifetimes and Oscillator Strengths in Ce II. Application to the Chemical Composition of the Sun , 2000 .

[14]  Saul J. Adelman uvby FCAPT photometry of the metallic-lined stars 60 Tau and HR 1528 and the magnetic CP stars HR 8216 and HR 8770 , 2003 .

[15]  S. Kröll,et al.  Natural radiative lifetimes in the 3 sns 1S0 and 3 snd 1D2 sequences of magnesium , 1984 .

[16]  E. Schulz-Gulde Oscillator strengths of spectral lines of neutral and singly ionized silicon , 1969 .

[17]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[18]  H. Berry,et al.  Lifetime Measurements in Si II, Si III, and Si IV , 1971 .

[19]  S. Johansson,et al.  The FERRUM project: Branching ratios and atomic transition probabilities of Fe II transitions from the 3d 6 (a 3 F)4p subconfiguration in the visible to VUV spectral region , 2001 .

[20]  M. Mermilliod,et al.  $uvby\beta$ photoelectric photometric catalogue , 1998 .

[21]  N. Morrell,et al.  The Relation between Rotational Velocities and Spectral Peculiarities among A-Type Stars , 1995 .

[22]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[23]  A. Ginibre Fine and hyperfine structures of singly ionized praseodymium: I. energy levels, hyperfine structures and Zeeman effect, classified lines , 1989 .

[24]  G. J. Simmons,et al.  Measurement of relative oscillator strengths for Fe I: transitions from levels ${b}^{3}\,{F}_{2-4}$ (2.61 eV – 2.56 eV). Use of a multipass optical system , 1982 .

[25]  Y. Takeda Oxygen-Line Formation in Population-II A-Type Stars , 1997 .

[26]  S. Adelman,et al.  On the rotation of the chemically peculiar magnetic star 56 Arietis , 2001 .

[27]  G. Preston The Mean Surface Fields of Magnetic Stars , 1971 .

[28]  David Tytler,et al.  ASTROPHYSICAL APPLICATIONS OF POWERFUL NEW DATABASES , 1995 .

[29]  C. Cowley An approximate Stark broadening formula for use in spectrum synthesis , 1971 .

[30]  F. Leblanc,et al.  Observational Evidence for the Stratification of Chemical Abundances in Stellar Atmospheres , 2003 .

[31]  G. Smith,et al.  Oscillator strengths and collisional damping parameters for lines of neutral calcium , 1981 .

[32]  H. C. Stempels,et al.  The Vienna Atomic Line Data Base – a Status Report , 1999 .

[33]  J. Campos,et al.  Transition probabilities of some Si II lines obtained by laser produced plasma emission , 1995 .

[34]  Nikolai Piskunov,et al.  Abundance stratification and pulsation in the atmosphere of the roAp star $\boldmath\gamma$ Equulei , 2002 .

[35]  D. Crawford,et al.  A photometric map of interstellar reddening whitin 100 pc. , 1982 .

[36]  H. Holweger Photospheric Abundances: Problems, Updates, Implications , 2001, astro-ph/0107426.

[37]  Charles R. Cowley,et al.  Numerical taxonomy of AP and AM stars , 1979 .

[38]  E. A. Den Hartog,et al.  Improved Laboratory Transition Probabilities for Nd II and Application to the Neodymium Abundances of the Sun and Three Metal-poor Stars , 2003 .

[39]  C. Cowley,et al.  VANADIUM ABUNDANCES IN EARLY A STARS. , 1978 .

[40]  S. Adelman,et al.  The Variability of the Hg II λ3984 Line of the Mercury-Manganese Star α Andromedae , 2002 .

[41]  J. W. Brault,et al.  Lifetimes, transition probabilities, and level energies in Fe i , 1991 .

[42]  M. Breger Catalog of Spectrophotometric Scans of Stars , 1976 .

[43]  G. J. Simmons,et al.  Precision measurement of relative oscillator strengths – IX. Measures of Fe I transitions from levels $a^{5} P_{1-3} (2.18-2.28 \,\text{eV}), \,a^{3} \,P_{2} \,(2.28 \,\text{eV}), a{3}\,P_{0,1} \,(2.49-2.42 \,\text{eV}), z^{7}\, D_{1-5}^{0}\, (2.48-2.40 \,\text{eV}) \,\text{and} \,a^{3} \,H_{4-6} \, , 1982 .

[44]  M. Allen Yttrium in the peculiar A and B stars , 1977 .

[45]  N. Nesvacil,et al.  The spectroscopic signature of roAp stars , 2004 .

[46]  J. Black,et al.  Oscillator strengths and ground-state photoionization cross-sections for Mg+ and Ca+. , 1972 .